Book Search

Download this chapter in PDF format


Table of contents

How to order your own hardcover copy

Wouldn't you rather have a bound book instead of 640 loose pages?
Your laser printer will thank you!
Order from

Chapter 8: The Discrete Fourier Transform


The synthesis and analysis equations (Eqs. 8-2 and 8-4) are strikingly similar. To move from one domain to the other, the known values are multiplied by the basis functions, and the resulting products added. The fact that the DFT and the Inverse DFT use this same mathematical approach is really quite remarkable, considering the totally different way we arrived at the two procedures. In fact, the only significant difference between the two equations is a result of the time domain being one signal of N points, while the frequency domain is two signals of N/2 + 1 points. As discussed in later chapters, the complex DFT expresses both the time and the frequency domains as complex signals of N points each. This makes the two domains completely symmetrical, and the equations for moving between them virtually identical.

This symmetry between the time and frequency domains is called duality, and gives rise to many interesting properties. For example, a single point in the frequency domain corresponds to a sinusoid in the time domain. By duality, the inverse is also true, a single point in the time domain corresponds to a sinusoid in the frequency domain. As another example, convolution in the time domain corresponds to multiplication in the frequency domain. By duality, the reverse is also true: convolution in the frequency domain corresponds to multiplication in the time domain. These and other duality relationships are discussed in more detail in Chapters 10 and 11.

Next Section: Polar Notation