Digital Signal Processing

By Steven W. Smith, Ph.D.

- 1: The Breadth and Depth of DSP
- 2: Statistics, Probability and Noise
- 3: ADC and DAC
- 4: DSP Software
- 5: Linear Systems
- 6: Convolution
- 7: Properties of Convolution
- 8: The Discrete Fourier Transform
- 9: Applications of the DFT
- 10: Fourier Transform Properties
- 11: Fourier Transform Pairs
- 12: The Fast Fourier Transform
- 13: Continuous Signal Processing
- 14: Introduction to Digital Filters
- 15: Moving Average Filters
- 16: Windowed-Sinc Filters
- 17: Custom Filters
- 18: FFT Convolution
- 19: Recursive Filters
- 20: Chebyshev Filters
- 21: Filter Comparison
- 22: Audio Processing
- 23: Image Formation & Display
- 24: Linear Image Processing
- 25: Special Imaging Techniques
- 26: Neural Networks (and more!)
- 27: Data Compression
- 28: Digital Signal Processors
- 29: Getting Started with DSPs
- 30: Complex Numbers
- 31: The Complex Fourier Transform
- 32: The Laplace Transform
- 33: The z-Transform
- 34: Explaining Benford's Law

Your laser printer will thank you!

*Audio processing* covers many diverse fields, all involved in presenting sound to human
listeners. Three areas are prominent: (1)* high fidelity music reproduction*, such as in audio
compact discs, (2) *voice telecommunications*, another name for telephone networks, and (3)
*synthetic speech*, where computers generate and recognize human voice patterns. While these
applications have different goals and problems, they are linked by a common umpire: the human
ear. Digital Signal Processing has produced revolutionary changes in these and other areas of
audio processing.