Book Search

Download this chapter in PDF format

Chapter23.pdf

Table of contents

How to order your own hardcover copy

Wouldn't you rather have a bound book instead of 640 loose pages?
Your laser printer will thank you!
Order from Amazon.com.

Chapter 23: Image Formation & Display

Other Image Acquisition and Display

Not all images are acquired an entire frame at a time. Another very common way is by line scanning. This involves using a detector containing a one-dimensional array of pixels, say, 2048 pixels long by 1 pixel wide. As an object is moved past the detector, the image is acquired line-by-line. Line scanning is used by fax machines and airport x-ray baggage scanners. As a variation, the object can be kept stationary while the detector is moved. This is very convenient when the detector is already mounted on a moving object, such as an aircraft taking images of the ground beneath it. The advantage of line scanning is that speed is traded for detector simplicity. For example, a fax machine may take several seconds to scan an entire page of text, but the resulting image contains thousands of rows and columns.

An even more simplified approach is to acquire the image point-by-point. For example, the microwave image of Venus was acquired one pixel at a time. Another example is the scanning probe microscope, capable of imaging individual atoms. A small probe, often consisting of only a single atom at its tip, is brought exceedingly close to the sample being imaged. Quantum mechanical effects can be detected between the probe and the sample, allowing the probe to be stopped an exact distance from the sample's surface. The probe is then moved over the surface of the sample, keeping a constant distance, tracing out the peaks and valleys. In the final image, each pixel's value represents the elevation of the corresponding location on the sample's surface.

Printed images are divided into two categories: grayscale and halftone. Each pixel in a grayscale image is a shade of gray between black and white, such as in a photograph. In comparison, each pixel in a halftone image is formed from many individual dots, with each dot being completely black or completely white. Shades of gray are produced by alternating various numbers of these black and white dots. For example, imagine a laser printer with a resolution of 600 dots-per-inch. To reproduce 256 levels of brightness between black and white, each pixel would correspond to an array of 16 by 16 printable dots. Black pixels are formed by making all of these 256 dots black. Likewise, white pixels are formed making all of these 256 dots white. Mid-gray has one-half of the dots white and one-half black. Since the individual dots are too small to be seen when viewed at a normal distance, the eye is fooled into thinking a grayscale has been formed.

Halftone images are easier for printers to handle, including photocopy machines. The disadvantage is that the image quality is often worse than grayscale pictures.

Next Section: Brightness and Contrast Adjustments