
605

CHAPTER

33

X (s) ' m
4

t ' &4

x (t) e & s t dt

The z-Transform

Just as analog filters are designed using the Laplace transform, recursive digital filters are
developed with a parallel technique called the z-transform. The overall strategy of these two
transforms is the same: probe the impulse response with sinusoids and exponentials to find the
system's poles and zeros. The Laplace transform deals with differential equations, the s-domain,
and the s-plane. Correspondingly, the z-transform deals with difference equations, the z-domain,
and the z-plane. However, the two techniques are not a mirror image of each other; the s-plane
is arranged in a rectangular coordinate system, while the z-plane uses a polar format. Recursive
digital filters are often designed by starting with one of the classic analog filters, such as the
Butterworth, Chebyshev, or elliptic. A series of mathematical conversions are then used to obtain
the desired digital filter. The z-transform provides the framework for this mathematics. The
Chebyshev filter design program presented in Chapter 20 uses this approach, and is discussed in
detail in this chapter.

The Nature of the z-Domain

To reinforce that the Laplace and z-transforms are parallel techniques, we will
start with the Laplace transform and show how it can be changed into the z-
transform. From the last chapter, the Laplace transform is defined by the
relationship between the time domain and s-domain signals:

where and are the time domain and s-domain representation of thex (t) X (s)
signal, respectively. As discussed in the last chapter, this equation analyzes the
time domain signal in terms of sine and cosine waves that have an
exponentially changing amplitude. This can be understood by replacing the

The Scientist and Engineer's Guide to Digital Signal Processing606

X (F,T) ' m
4

t ' &4

x (t) e &F t e & jTt dt

X (F,T) ' j
4

n ' &4
x [n] e &Fn e & jTn

y [n] ' e

&F n y [n] ' r

-n
or

complex variable, s, with its equivalent expression, . Using this alternateF% jT
notation, the Laplace transform becomes:

If we are only concerned with real time domain signals (the usual case), the top
and bottom halves of the s-plane are mirror images of each other, and the term,

, reduces to simple cosine and sine waves. This equation identifies eache & jTt

location in the s-plane by the two parameters, F and T. The value at each
location is a complex number, consisting of a real part and an imaginary part.
To find the real part, the time domain signal is multiplied by a cosine wave
with a frequency of T , and an amplitude that changes exponentially
according to the decay parameter, F. The value of the real part of X (F,T)
is then equal to the integral of the resulting waveform. The value of the
imaginary part of is found in a similar way, except using a sineX (F,T)
wave. If this doesn't sound very familiar, you need to review the previous
chapter before continuing.

The Laplace transform can be changed into the z-transform in three steps. The
first step is the most obvious: change from continuous to discrete signals. This
is done by replacing the time variable, t, with the sample number, n, and
changing the integral into a summation:

Notice that uses parentheses, indicating it is continuous, not discrete.X (F,T)
Even though we are now dealing with a discrete time domain signal, , thex[n]
parameters F and T can still take on a continuous range of values. The second
step is to rewrite the exponential term. An exponential signal can be
mathematically represented in either of two ways:

As illustrated in Fig. 33-1, both these equations generate an exponential
curve. The first expression controls the decay of the signal through the
parameter, F. If F is positive, the waveform will decrease in value as the
sample number, n, becomes larger. Likewise, the curve will progressively
increase if F is negative. If F is exactly zero, the signal will have a
constant value of one.

Chapter 33- The z-Transform 607

n
-10 -5 0 5 10

0

1

2

3

n
-10 -5 0 5 10

0

1

2

3

n
-10 -5 0 5 10

0

1

2

3

or

a. Decreasing

b. Constant

c. Increasing

or

or

FIGURE 33-1
Exponential signals. Exponentials
can be represented in two different
mathematical forms. The Laplace
transform uses one way, while the
z-transform uses the other.

y [n] ' e &Fn, F' 0.105

y [n] ' r-n, r ' 1.1

y [n] ' e &Fn, F' 0.000

y [n] ' r-n, r ' 1.0

y [n] ' e &Fn, F' &0.095

y [n] ' r-n, r ' 0.9

y[
n]

y[
n]

y[
n]

r-n ' [e

ln (r)]-n ' e-n ln (r) ' e

&F n

 where: F ' ln (r)

X (r, T) ' j
4

n ' &4
x [n] r-n e

& j T n

The second expression uses the parameter, r, to control the decay of the
waveform. The waveform will decrease if , and increase if . Ther > 1 r < 1
signal will have a constant value when . These two equations are justr '1
different ways of expressing the same thing. One method can be swapped for
the other by using the relation:

The second step of converting the Laplace transform into the z-transform is
completed by using the other exponential form:

While this is a perfectly correct expression of the z-transform, it is not in
the most compact form for complex notation. This problem was overcome

The Scientist and Engineer's Guide to Digital Signal Processing608

z ' r e

j T

EQUATION 33-1
The z-transform. The z-transform defines
the relationship between the time domain
signal, , and the z-domain signal, .x [n] X (z)

X (z) ' j
4

n ' &4
x [n] z &n

in the Laplace transform by introducing a new complex variable, s, defined to
be: . In this same way, we will define a new variable for the z-s ' F% jT
transform:

This is defining the complex variable, z, as the polar notation combination of
the two real variables, r and T. The third step in deriving the z-transform is
to replace: r and T, with z. This produces the standard form of the z-
transform:

Why does the z-transform use instead of , and z instead of s? Asr n e &Fn

described in Chapter 19, recursive filters are implemented by a set of recursion
coefficients. To analyze these systems in the z-domain, we must be able to
convert these recursion coefficients into the z-domain transfer function, and
back again. As we will show shortly, defining the z-transform in this manner
(and z) provides the simplest means of moving between these two importantr n

representations. In fact, defining the z-domain in this way makes it trivial to
move from one representation to the other.

Figure 33-2 illustrates the difference between the Laplace transform's s-plane,
and the z-transform's z-plane. Locations in the s-plane are identified by two
parameters: F, the exponential decay variable along the horizontal axis, and T,
the frequency variable along the vertical axis. In other words, these two real
parameters are arranged in a rectangular coordinate system. This geometry
results from defining s, the complex variable representing position in the s-
plane, by the relation: .s ' F% jT

In comparison, the z-domain uses the variables: r and T, arranged in polar
coordinates. The distance from the origin, r, is the value of the exponential
decay. The angular distance measured from the positive horizontal axis, T, is
the frequency. This geometry results from defining z by: . In otherz ' re & jT

words, the complex variable representing position in the z-plane is formed by
combining the two real parameters in a polar form.

These differences result in vertical lines in the s-plane matching circles in
the z-plane. For example, the s-plane in Fig. 33-2 shows a pole-zero pattern
where all of the poles & zeros lie on vertical lines. The equivalent poles &
zeros in the z-plane lie on circles concentric with the origin. This can be
understood by examining the relation presented earlier: . ForF' & ln(r)
instance, the s-plane's vertical axis (i.e.,) corresponds to the z-plane'sF' 0

Chapter 33- The z-Transform 609

Re

Im Im

Re

T

F

s - Plane

r

DC

z - Plane

T

DC
(F' 0, T' 0) (r ' 1, T' 0)

r ' 1

FIGURE 33-2
Relationship between the s-plane and the z-plane. The s-plane is a rectangular coordinate system with F
expressing the distance along the real (horizontal) axis, and T the distance along the imaginary (vertical) axis.
In comparison, the z-plane is in polar form, with r being the distance to the origin, and T the angle measured
to the positive horizontal axis. Vertical lines in the s-plane, such as illustrated by the example poles and zeros
in this figure, correspond to circles in the z-plane.

unit circle (that is,). Vertical lines in the left half of the s-planer ' 1
correspond to circles inside the z-plane's unit circle. Likewise, vertical
lines in the right half of the s-plane match with circles on the outside of the
z-plane's unit circle. In other words, the left and right sides of the s-plane
correspond to the interior and the exterior of the unit circle, respectively.
For instance, a continuous system is unstable when poles occupy the right
half of the s-plane. In this same way, a discrete system is unstable when
poles are outside the unit circle in the z-plane. When the time domain
signal is completely real (the most common case), the upper and lower
halves of the z-plane are mirror images of each other, just as with the s-
domain.

Pay particular attention to how the frequency variable, T, is used in the two
transforms. A continuous sinusoid can have any frequency between DC and
infinity. This means that the s-plane must allow T to run from negative to
positive infinity. In comparison, a discrete sinusoid can only have a
frequency between DC and one-half the sampling rate. That is, the
frequency must be between 0 and 0.5 when expressed as a fraction of the
sampling rate, or between 0 and B when expressed as a natural frequency
(i.e.,). This matches the geometry of the z-plane when we interpretT ' 2B f
T to be an angle expressed in radians. That is, the positive frequencies
correspond to angles of 0 to B radians, while the negative frequencies
correspond to 0 to -B radians. Since the z-plane express frequency in a
different way than the s-plane, some authors use different symbols to

The Scientist and Engineer's Guide to Digital Signal Processing610

y[n] ' a0 x [n] % a1x[n&1] % a2x[n&2] % þ% b1 y[n&1] % b2y [n&2] % b3y[n&3] % þ

EQUATION 33-2
Difference equation. See Chapter
19 for details.

distinguish the two. A common notation is to use S (an upper case omega)
to represent frequency in the z-domain, and T (a lower case omega) for
frequency in the s-domain. In this book we will use T to represent both
types of frequency, but look for this in other DSP material.

In the s-plane, the values that lie along the vertical axis are equal to the
frequency response of the system. That is, the Laplace transform, evaluated at

, is equal to the Fourier transform. In an analogous manner, theF' 0
frequency response in the z-domain is found along the unit circle. This can be
seen by evaluating the z-transform (Eq. 33-1) at , resulting in the equationr ' 1
reducing to the Discrete Time Fourier Transform (DTFT). This places zero
frequency (DC) at a value of one on the horizontal axis in the s-plane. The
spectrum's positive frequencies are positioned in a counter-clockwise pattern
from this DC position, occupying the upper semicircle. Likewise the negative
frequencies are arranged from the DC position along the clockwise path,
forming the lower semicircle. The positive and negative frequencies in the
spectrum meet at the common point of and . This circularT ' B T ' &B
geometry also corresponds to the frequency spectrum of a discrete signal being
periodic. That is, when the frequency angle is increased beyond B, the same
values are encountered as between 0 and B. When you run around in a circle,
you see the same scenery over and over.

Analysis of Recursive Systems

As outlined in Chapter 19, a recursive filter is described by a difference
equation:

where and are the input and output signals, respectively, and the "a"x [] y []
and "b" terms are the recursion coefficients. An obvious use of this equation
is to describe how a programmer would implement the filter. An equally
important aspect is that it represents a mathematical relationship between the
input and output that must be continually satisfied. Just as continuous systems
are controlled by differential equations, recursive discrete systems operate in
accordance with this difference equation. From this relationship we can derive
the key characteristics of the system: the impulse response, step response,
frequency response, pole-zero plot, etc.

We start the analysis by taking the z-transform (Eq. 33-1) of both sides of Eq.
33-2. In other words, we want to see what this controlling relationship looks
like in the z-domain. With a fair amount of algebra, we can separate the
relation into: , that is, the z-domain representation of the outputY[z] / X [z]
signal divided by the z-domain representation of the input signal. Just as with

Chapter 33- The z-Transform 611

H [z] '
a0 % a1 z &1 % a2 z &2 % a3 z &3 % þ

1 & b1 z &1 & b2 z &2 & b3 z &3 & þ

EQUATION 33-3
Transfer function in polynomial form.
The recursion coefficients are directly
identifiable in this relation.

a0 = 0.389
a1 = -1.558 b1 = 2.161
a2 = 2.338 b2 = -2.033
a3 = -1.558 b3 = 0.878
a4 = 0.389 b4 = -0.161

H [z] '
0.389 & 1.558 z &1 % 2.338z &2 & 1.558 z &3 % 0.389z &4

1 & 2.161 z &1 % 2.033z &2 & 0.878 z &3 % 0.161z &4

H [z] '
0.389 z 4 & 1.558z 3 % 2.338 z 2 & 1.558z % 0.389

z 4 & 2.161 z 3 % 2.033z 2 & 0.878 z % 0.161

the Laplace transform, this is called the system's transfer function, and
designate it by . Here is what we find:H [z]

This is one of two ways that the transfer function can be written. This form is
important because it directly contains the recursion coefficients. For example,
suppose we know the recursion coefficients of a digital filter, such as might be
provided from a design table:

Without having to worry about nasty complex algebra, we can directly write
down the system's transfer function:

Notice that the "b" coefficients enter the transfer function with a negative sign
in front of them. Alternatively, some authors write this equation using
additions, but change the sign of all the "b" coefficients. Here's the problem.
If you are given a set of recursion coefficients (such as from a table or filter
design program), there is a 50-50 chance that the "b" coefficients will have the
opposite sign from what you expect. If you don't catch this discrepancy, the
filter will be grossly unstable.

Equation 33-3 expresses the transfer function using negative powers of z, such
as: etc. After an actual set of recursion coefficients have beenz &1, z &2, z &3,
plugged in, we can convert the transfer function into a more conventional form
that uses positive powers: i.e., . By multiplying both the numeratorz, z 2, z 3, þ
and denominator of our example by , we obtain:z 4

The Scientist and Engineer's Guide to Digital Signal Processing612

H [z] '
(z & z1) (z & z2) (z & z3)þ

(z &p1) (z &p2) (z &p3)þ

EQUATION 33-4
Transfer function in pole-zero form.

Positive powers are often easier to use, and they are required by some z-
domain techniques. Why not just rewrite Eq. 33-3 using positive powers and
forget about negative powers entirely? We can't! The trick of multiplying the
numerator and denominator by the highest power of z (such as in ourz 4

example) can only be used if the number of recursion coefficients is already
known. Equation 33-3 is written for an arbitrary number of coefficients. The
point is, both positive and negative powers are routinely used in DSP and you
need to know how to convert between the two forms.

The transfer function of a recursive system is useful because it can be
manipulated in ways that the recursion coefficients cannot. This includes such
tasks as: combining cascade and parallel stages into a single system, designing
filters by specifying the pole and zero locations, converting analog filters into
digital, etc. These operations are carried out by algebra performed in the z-
domain, such as: multiplication, addition, and factoring. After these operations
are completed, the transfer function is placed in the form of Eq. 33-3, allowing
the new recursion coefficients to be identified.

Just as with the s-domain, an important feature of the z-domain is that the
transfer function can be expressed as poles and zeros. This provides the
second general form of the z-domain:

Each of the poles () and zeros () is a complex number. Top1, p2, p3,þ z1, z2, z3þ
move from Eq. 33-4 to 33-3, multiply out the expressions and collect like
terms. While this can involve a tremendous amount of algebra, it is
straightforward in principle and can easily be written into a computer routine.
Moving from Eq. 33-3 to 33-4 is more difficult because it requires factoring
of the polynomials. As discussed in Chapter 32, the quadratic equation can be
used for the factoring if the transfer function is second order or less (i.e., there
are no powers of z higher than). Algebraic methods cannot generally bez 2

used to factor systems greater than second order and numerical methods must
be employed. Fortunately, this is seldom needed; digital filter design starts with
the pole-zero locations (Eq. 33-4) and ends with the recursion coefficients (Eq.
33-3), not the other way around.

As with all complex numbers, the pole and zero locations can be represented
in either polar or rectangular form. Polar notation has the advantage of being
more consistent with the natural organization of the z-plane. In comparison,
rectangular form is generally preferred for mathematical work, that is, it is
usually easier to manipulate: , as compared with: .F% jT re jT

As an example of using these equations, we will design a notch filter by the
following steps: (1) specify the pole-zero placement in the z-plane, (2)

Chapter 33- The z-Transform 613

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

c. Frequency response

Sample number
0 5 10 15 20 25 30 35 40

-0.5

0.0

0.5

1.0

1.5

b. Impulse response

Im

Re

a. Pole-zero plot

FIGURE 33-3
Notch filter designed in the z-domain. The
design starts by locating two poles and two
zeros in the z-plane, as shown in (a). The
resulting impulse and frequency response
are shown in (b) and (c), respectively. The
sharpness of the notch is controlled by the
distance of the poles from the zeros.

A
m

pl
itu

de

A
m

pl
itu

de

r ' 1

B/4

r ' 0.9

In rectangular form:In polar form:

z1 ' 1.00e j (B/4)

z2 ' 1.00e j (&B/4)

p1 ' 0.90e j (B/4)

p2 ' 0.90e j (&B/4)

z1 ' 0.7071 % j 0.7071

z2 ' 0.7071 & j 0.7071

p1 ' 0.6364 % j 0.6364

p2 ' 0.6364 & j 0.6364

write down the transfer function in the form of Eq. 33-4, (3) rearrange the
transfer function into the form of Eq. 33-3, and (4) identify the recursion
coefficients needed to implement the filter. Fig. 33-3 shows the example we
will use: a notch filter formed from two poles and two zeros located at

To understand why this is a notch filter, compare this pole-zero plot with Fig.
32-6, a notch filter in the s-plane. The only difference is that we are moving
along the unit circle to find the frequency response from the z-plane, as
opposed to moving along the vertical axis to find the frequency response from
the s-plane. From the polar form of the poles and zeros, it can be seen that the
notch will occur at a natural frequency of , corresponding to 0.125 of theB/4
sampling rate.

The Scientist and Engineer's Guide to Digital Signal Processing614

H (z) '
[z & (0.7071% j 0.7071)] [z & (0.7071& j 0.7071)]
[z & (0.6364% j 0.6364)] [z & (0.6364& j 0.6364)]

H(z) '
z 2& 0.7071z % j 0.7071z & 0.7071z % 0.70712 & j 0.70712 & j 0.7071z % j 0.70712 & j 2 0.70712

z 2& 0.6364z % j 0.6364z & 0.6364z % 0.63642 & j 0.63642 & j 0.6364z % j 0.63642 & j 2 0.63642

H [z] '
1.000 & 1.414 z % 1.000z 2

0.810 & 1.273 z % 1.000z 2

H [z] '
1.000 & 1.414 z &1 % 1.000z &2

1.000 & 1.273 z &1 % 0.810z &2

a0 = 1.000
a1 = -1.414 b1 = 1.273
a2 = 1.000 b2 = -0.810

Since the pole and zero locations are known, the transfer function can be
written in the form of Eq. 33-4 by simply plugging in the values:

To find the recursion coefficients that implement this filter, the transfer
function must be rearranged into the form of Eq. 33-3. To start, expand the
expression by multiplying out the terms:

Next, we collect like terms and reduce. As long as the upper half of the z-
plane is a mirror image of the lower half (which is always the case if we are
dealing with a real impulse response), all of the terms containing a will" j"
cancel out of the expression:

While this is in the form of one polynomial divided by another, it does not use
negative exponents of z, as required by Eq. 33-3. This can be changed by
dividing both the numerator and denominator by the highest power of z in the
expression, in this case, :z 2

Since the transfer function is now in the form of Eq. 33-3, the recursive
coefficients can be directly extracted by inspection:

This example provides the general strategy for obtaining the recursion
coefficients from a pole-zero plot. In specific cases, it is possible to derive

Chapter 33- The z-Transform 615

EQUATION 33-5
Biquad design equations. These equations give
the recursion coefficients, , froma0, a1, a2, b1, b2
the position of the poles: , and therp & Tp
zeros: .r0 & T0

a0 ' 1

a1 ' &2r0 cos(T0)

a2 ' r 2
0

b1 ' 2rp cos(Tp)

b2 ' & r 2
p

simpler equations directly relating the pole-zero positions to the recursion
coefficients. For example, a system containing two poles and two zeros, called
as biquad, has the following relations:

After the transfer function has been specified, how do we find the frequency
response? There are three methods: one is mathematical and two are
computational (programming). The mathematical method is based on finding
the values in the z-plane that lie on the unit circle. This is done by evaluating
the transfer function, . Specifically, we start by writing down theH (z), at r ' 1
transfer function in the form of either Eq. 33-3 or 33-4. We then replace each
z with (that is,). This provides a mathematical equatione & jT re & jT with r' 1
of the frequency response, . The problem is, the resulting expression isH (T)
in a very inconvenient form. A significant amount of algebra is usually
required to obtain something recognizable, such as the magnitude and phase.
While this method provides an exact equation for the frequency response, it is
difficult to automate in computer programs, such as needed in filter design
packages.

The second method for finding the frequency response also uses the approach
of evaluating the z-plane on the unit circle. The difference is that we only
calculate samples of the frequency response, not a mathematical solution for
the entire curve. A computer program loops through, perhaps, 1000 equally
spaced frequencies between and . Think of an ant moving betweenT' 0 T' B
1000 discrete points on the upper half of the z-plane's unit circle. The
magnitude and phase of the frequency response are found at each of these
location by evaluating the transfer function.

This method works well and is often used in filter design packages. Its major
limitation is that it does not account for round-off noise affecting the system's
characteristics. Even if the frequency response found by this method looks
perfect, the implemented system can be completely unstable!

This brings up the third method: find the frequency response from the recursion
coefficients that are actually used to implement the filter. To start, we find the
impulse response of the filter by passing an impulse through the system. In the
second step, we take the DFT of the impulse response (using the FFT, of
course) to find the system's frequency response. The only critical item to
remember with this procedure is that enough samples must be taken of the
impulse response so that the discarded samples are insignificant. While books

The Scientist and Engineer's Guide to Digital Signal Processing616

H [z] '
a0 % a1z

&1 % a2 z &2

1 & b1z
&1 & b2 z &2

×
A0 % A1z

&1 % A2 z &2

1 & B1z
&1 & B2 z &2

H [z] '
a0 A0 % (a0 A1% a1A0) z &1 % (a0 A2% a1 A1% a2 A0) z &2 % (a1A2% a2 A1)z &3 % (a2 A2) z &4

1 & (b1% B1)z &1 & (b2% B2& b1 B1) z &2 & (&b1 B2& b2B1) z &3 & (&b2 B2)z &4

could be written on the theoretical criteria for this, the practical rules are much
simpler. Use as many samples as you think are necessary. After finding the
frequency response, go back and repeat the procedure using twice as many
samples. If the two frequency responses are adequately similar, you can be
assured that the truncation of the impulse response hasn't fooled you in some
way.

Cascade and Parallel Stages

Sophisticated recursive filters are usually designed in stages to simplify the
tedious algebra of the z-domain. Figure 33-4 illustrates the two common ways
that individual stages can be arranged: cascaded stages and parallel stages with
added outputs. For example, a low-pass and high-pass stage can be cascaded
to form a band-pass filter. Likewise, a parallel combination of low-pass and
high-pass stages can form a band-reject filter. We will call the two stages
being combined system 1 and system 2, with their recursion coefficients being
called: and , respectively. Our goal is toa0, a1, a2, b1, b2 A0, A1, A2, B1, B2
combine these stages (in cascade or parallel) into a single recursive filter,
which we will call system 3 , with recursion coefficients given by:

.a0, a1, a2, a3, a4, b1, b2, b3, b4

As you recall from previous chapters, the frequency responses of systems in a
cascade are combined by multiplication. Also, the frequency responses of
systems in parallel are combined by addition. These same rules are followed
by the z-domain transfer functions. This allows recursive systems to be
combined by moving the problem into the z-domain, performing the required
multiplication or addition, and then returning to the recursion coefficients of the
final system.

As an example of this method, we will work out the algebra for combining two
biquad stages in a cascade. The transfer function of each stage is found by
writing Eq. 33-3 using the appropriate recursion coefficients. The transfer
function of the entire system, , is then found by multiplying the transferH [z]
functions of the two stage:

Multiplying out the polynomials and collecting like terms:

Chapter 33- The z-Transform 617

System 1 System 2
x[n] y[n]

System 1

x[n] y[n]

System 2

System 3
x[n] y[n]

a. Cascade

b. Parallel

c. Replacement

FIGURE 33-4
Combining cascade and parallel stages.
The z-domain allows recursive stages in a
cascade, (a), or in parallel, (b), to be
combined into a single system, (c).

a0, a1, a2

b1, b2

A0, A1, A2

B1, B2

a0, a1, a2

b1, b2

A0, A1, A2

B1, B2

a0, a1, a2, a3, a4

b1, b2, b3, b4

a0 ' a0 A0

a1 ' a0 A1% a1A0

a2 ' a0 A2% a1A1% a2 A0

a3 ' a1 A2% a2A1

a4 ' a2 A2

b1 ' b1% B1

b2 ' b2% B2& b1 B1

b3 ' &b1 B2& b2B1

b4 ' &b2 B2

Since this is in the form of Eq. 33-3, we can directly extract the recursion
coefficients that implement the cascaded system:

The obvious problem with this technique is the large amount of algebra needed
to multiply and rearrange the polynomial terms. Fortunately, the entire
algorithm can be expressed in a short computer program, shown in Table 33-1.
Although the cascade and parallel combinations require different mathematics,
they use nearly the same program. In particular, only one line of code is
different between the two algorithms, allowing both to be combined into a
single program.

The Scientist and Engineer's Guide to Digital Signal Processing618

TABLE 33-1
Combining cascade and parallel stages. This program combines the recursion coefficients of stages in
cascade or parallel. The recursive coefficients for the two stages being combined enter the program in the
arrays: A1[], B1[], & A2[], B2[]. The recursion coefficients that implement the entire system leave the
program in the arrays: A3[], B3[].

100 'COMBINING RECURSION COEFFICIENTS OF CASCADE AND PARALLEL STAGES
110 '
120 ' 'INITIALIZE VARIABLES
130 DIM A1[8], B1[8] 'a and b coefficients for system 1, one of the stages
140 DIM A2[8], B2[8] 'a and b coefficients for system 2, one of the stages
150 DIM A3[16], B3[16] 'a and b coefficients for system 3, the combined system
160 '
170 'Indicate cascade or parallel combination
180 INPUT "Enter 0 for cascade, 1 for parallel: ", CP%
190 '
200 GOSUB XXXX 'Mythical subroutine to load: A1[], B1[], A2[], B2[]
210 '
220 FOR I% = 0 TO 8 'Convert the recursion coefficients into transfer functions
230 B2[I%] = -B2[I%]
240 B1[I%] = -B1[I%]
250 NEXT I%
260 B1[0] = 1
270 B2[0] = 1
280 '
290 FOR I% = 0 TO 16 'Multiply the polynomials by convolving
300 A3[I%] = 0
310 B3[I%] = 0
320 FOR J% = 0 TO 8
330 IF I%-J% < 0 OR I%-J% > 8 THEN GOTO 370
340 IF CP% = 0 THEN A3[I%] = A3[I%] + A1[J%] * A2[I%-J%]
350 IF CP% = 1 THEN A3[I%] = A3[I%] + A1[J%] * B2[I%-J%] + A2[J%] * B1[I%-J%]
360 B3[I%] = B3[I%] + B1[J%] * B2[I%-J%]
370 NEXT J%
380 NEXT I%
390 '
400 FOR I% = 0 TO 16 'Convert the transfer function into recursion coefficients.
410 B3[I%] = -B3[I%]
420 NEXT I%
430 B3[0] = 0
440 ' 'The recursion coefficients of the combined system now
450 END 'reside in A3[] & B3[]

This program operates by changing the recursive coefficients from each of the
individual stages into transfer functions in the form of Eq. 33-3 (lines 220-
270). After combining these transfer functions in the appropriate manner (lines
290-380), the information is moved back to being recursive coefficients (lines
400 to 430).

The heart of this program is how the transfer function polynomials are
represented and combined. For example, the numerator of the first stage
being combined is: . This polynomial is representeda0% a1 z &1% a2 z &2% a3z &3þ
in the program by storing the coefficients: , in the array:a0, a1, a2, a3 þ

. Likewise, the numerator for the second stage isA1[0], A1[1], A1[2], A1[3]þ
represented by the values stored in: , and theA2[0], A2[1], A2[2], A2[3]þ
numerator for the combined system in: . TheA3[0], A3[1], A3[2], A3[3]þ

Chapter 33- The z-Transform 619

w
x
%

y
z

'
w @ z % x @ y

x @z

Original
System

x[n] y[n]

FIGURE 33-5
Spectral inversion. This procedure is
the same as subtracting the output of
the system from the original signal.

idea is to represent and manipulate polynomials by only referring to their
coefficients. The question is, how do we calculate A3[], given that A1[],
A2[], and A3[] all represent polynomials? The answer is that when two
polynomials are multiplied, their coefficients are convolved. In equation form:

. This allows a standard convolution algorithm to find theA1[] (A2[] ' A3[]
transfer function of cascaded stages by convolving the two numerator arrays
and the two denominator arrays.

The procedure for combining parallel stages is slightly more complicated. In
algebra, fractions are added according to:

Since each of the transfer functions is a fraction (one polynomial divided by
another polynomial), we combine stages in parallel by multiplying the
denominators, and adding the cross products in the numerators. This means
that the denominator is calculated in the same way as for cascaded stages,
but the numerator calculation is more elaborate. In line 340, the numerators
of cascaded stages are convolved to find the numerator of the combined
transfer function. In line 350, the numerator of the parallel stage
combination is calculated as the sum of the two numerators convolved with
the two denominators. Line 360 handles the denominator calculation for
both cases.

Spectral Inversion

Chapter 14 describes an FIR filter technique called spectral inversion. This
is a way of changing the filter kernel such that the frequency response is
flipped top-for-bottom. All the passbands are changed into stopbands, and vice
versa. For example, a low-pass filter is changed into high-pass, a band-pass
filter into band-reject, etc. A similar procedure can be done with recursive
filters, although it is far less successful.

As illustrated in Fig. 33-5, spectral inversion is accomplished by subtracting
the output of the system from the original signal. This procedure can be

The Scientist and Engineer's Guide to Digital Signal Processing620

a0 ' 1& a0

a1 ' &a1& b1

a2 ' &a2& b2

a3 ' &a3& b3

!

EQUATION 33-6
Spectral inversion. The frequency response
of a recursive filter can be flipped top-for-
bottom by modifying the "a" coefficients
according to these equations. The original
coefficients are shown in italics, and the
modified coefficients in roman. The "b"
coefficients are not changed. This method
usually provides poor results.

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

a. Original LP

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

b. Inverted LP

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

c. Original notch

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

d. Inverted notch

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

FIGURE 33-6
Examples of spectral inversion. Figure (a) shows the frequency response of a 6 pole low-pass Butterworth filter.
Figure (b) shows the corresponding high-pass filter obtained by spectral inversion; its a mess! A more successful
case is shown in (c) and (d) where a notch filter is transformed in to a band-pass frequency response.

A
m

pl
itu

de

viewed as combining two stages in parallel, where one of the stages happens
to be the identity system (the output is identical to the input). Using this
approach, it can be shown that the "b" coefficients are left unchanged, and the
modified "a" coefficients are given by:

Figure 33-6 shows spectral inversion for two common frequency responses:
a low-pass filter, (a), and a notch filter, (c). This results in a high-pass
filter, (b), and a band-pass filter, (d), respectively. How do the resulting
frequency responses look? The high-pass filter is absolutely terrible! While

Chapter 33- The z-Transform 621

the band-pass is better, the peak is not as sharp as the notch filter from which
it was derived. These mediocre results are especially disappointing in
comparison to the excellent performance seen in Chapter 14. Why the
difference? The answer lies in something that is often forgotten in filter design:
the phase response.

To illustrate how phase is the culprit, consider a system called the Hilbert
transformer. The Hilbert transformer is not a specific device, but any system
that has the frequency response: Magnitude = 1 and phase = 90 degrees, for all
frequencies. This means that any sinusoid passing through a Hilbert
transformer will be unaffected in amplitude, but changed in phase by one-
quarter of a cycle. Hilbert transformers can be analog or discrete (that is,
hardware or software), and are commonly used in communications for various
modulation and demodulation techniques.

Now, suppose we spectrally invert the Hilbert transformer by subtracting its
output from the original signal. Looking only at the magnitude of the
frequency responses, we would conclude that the entire system would have an
output of zero. That is, the magnitude of the Hilbert transformer's output is
identical to the magnitude of the original signal, and the two will cancel. This,
of course, is completely incorrect. Two sinusoids will exactly cancel only if
they have the same magnitude and phase. In reality, the frequency response of
this composite system has a magnitude of , and a phase shift of -45 degrees.2
Rather than being zero (our naive guess), the output is larger in amplitude than
the input!

Spectral inversion works well in Chapter 14 because of the specific kind of
filter used: zero phase. That is, the filter kernels have a left-right symmetry.
When there is no phase shift introduced by a system, the subtraction of the
output from the input is dictated solely by the magnitudes. Since recursive
filters are plagued with phase shift, spectral inversion generally produces
unsatisfactory filters.

Gain Changes

Suppose we have a recursive filter and need to modify the recursion
coefficients such that the output signal is changed in amplitude. This might
be needed, for example, to insure that a filter has unity gain in the
passband. The method to achieve this is very simple: multiply the "a"
coefficients by whatever factor we want the gain to change by, and leave
the "b" coefficients alone.

Before adjusting the gain, we would probably like to know its current
value. Since the gain must be specified at a frequency in the passband, the
procedure depends on the type of filter being used. Low-pass filters have
their gain measured at a frequency of zero, while high-pass filters use a
frequency of 0.5, the maximum frequency allowable. It is quite simple to
derive expressions for the gain at both these special frequencies. Here's
how it is done.

The Scientist and Engineer's Guide to Digital Signal Processing622

y[n] ' a0 x[n] % a1 x[n&1] % a2 x[n&2] % þ% b1 y[n&1] % b2 y[n&2] % b3 y[n&3] % þ

G ' a0 % a1 % a2 % a3 % þ% b1 G % b2 G % b3 G % b4 G þ

G '
a0 % a1 % a2 % a3þ

1 & (b1 % b2 % b3þ)

EQUATION 33-7
DC gain of recursive filters. This
relation provides the DC gain from
the recursion coefficients.

G ' a0 & a1 % a2 & a3 % þ& b1 G % b2 G & b3 G % b4 G þ

G '
a0 & a1 % a2 & a3 % a4þ

1 & (& b1 % b2 & b3 % b4þ)

EQUATION 33-8
Gain at maximum frequency. This
relation gives the recursive filter's
gain at a frequency of 0.5, based on
the system's recursion coefficients.

First, we will derive an equation for the gain at zero frequency. The idea is to
force each of the input samples to have a value of one, resulting in each of the
output samples having a value of G, the gain of the system we are trying to
find. We will start by writing the recursion equation, the mathematical
relationship between the input and output signals:

Next, we plug in one for each input sample, and G for each output sample. In
other words, we force the system to operate at zero frequency. The equation
becomes:

Solving for G provides the gain of the system at zero frequency, based on its
recursion coefficients:

To make a filter have a gain of one at DC, calculate the existing gain by using
this relation, and then divide all the "a" coefficients by G.

The gain at a frequency of 0.5 is found in a similar way: we force the input and
output signals to operate at this frequency, and see how the system responds.
At a frequency of 0.5, the samples in the input signal alternate between -1 and
1. That is, successive samples are: 1, -1, 1, -1, 1, -1, 1, etc. The
corresponding output signal also alternates in sign, with an amplitude equal to
the gain of the system: G, -G, G, -G, G, -G, etc. Plugging these signals into
the recursion equation:

Solving for G provides the gain of the system at a frequency of 0.5, using its
recursion coefficients:

Chapter 33- The z-Transform 623

Just as before, a filter can be normalized for unity gain by dividing all of
the "a" coefficients by this calculated value of G. Calculation of Eq. 33-8
in a computer program requires a method for generating negative signs for
the odd coefficients, and positive signs for the even coefficients. The most
common method is to multiply each coefficient by , where k is the(&1)k

index of the coefficient being worked on. That is, as k runs through the
values: 0, 1, 2, 3, 4, 5, 6 etc., the expression, , takes on the values: 1,(&1)k

-1, 1, -1, 1, -1, 1 etc.

Chebyshev-Butterworth Filter Design

A common method of designing recursive digital filters is shown by the
Chebyshev-Butterworth program presented in Chapter 20. It starts with a pole-
zero diagram of an analog filter in the s-plane, and converts it into the desired
digital filter through several mathematical transforms. To reduce the
complexity of the algebra, the filter is designed as a cascade of several stages,
with each stage implementing one pair of poles. The recursive coefficients for
each stage are then combined into the recursive coefficients for the entire filter.
This is a very sophisticated and complicated algorithm; a fitting way to end this
book. Here's how it works.

Loop Control
Figure 33-7 shows the program and flowchart for the method, duplicated from
Chapter 20. After initialization and parameter entry, the main portion of the
program is a loop that runs through each pole-pair in the filter. This loop is
controlled by block 11 in the flowchart, and the FOR-NEXT loop in lines 320
& 460 of the program. For example, the loop will be executed three times for
a 6 pole filter, with the loop index, P%, taking on the values 1,2,3. That is, a
6 pole filter is implemented in three stages, with two poles per stage.

Combining Coefficients
During each loop, subroutine 1000 (listed in Fig. 33-8) calculates the recursive
coefficients for that stage. These are returned from the subroutine in the five
variables: . In step 10 of the flowchart (lines 360-440),A0, A1, A2, B1, B2
these coefficients are combined with the coefficients of all the previous stages,
held in the arrays: A[] and B[]. At the end of the first loop, A[] and B[]
hold the coefficients for stage one. At the end of the second loop, A[] and B[
] hold the coefficients of the cascade of stage one and stage two. When all the
loops have been completed, A[] and B[] hold the coefficients needed to
implement the entire filter.

The coefficients are combined as previously outlined in Table 33-1, with a few
modifications to make the code more compact. First, the index of the arrays,
A[] and B[], is shifted by two during the loop. For example, is held ina0
A[2], are held in A[3] & B[3], etc. This is done to prevent thea1 & b1
program from trying to access values outside the defined arrays. This shift is
removed in block 12 (lines 480-520), such that the final recursion coefficients
reside in A[] and B[] without an index offset.

The Scientist and Engineer's Guide to Digital Signal Processing624

EQUATION 33-9
Circular to elliptical transform. These
equations change the pole location on a
circle to a corresponding location on an
ellipse. The variables, NP and PR, are
the number of poles in the filter, and the
pe rcen t r i pp l e i n t he pas sband ,
respectively. The location on the circle
is given by F and T, and the location on
the ellipse by F3 and T3. The variables ,,
v, and k, are used only to make the
equations shorter.

Fr ' F sinh(v) /k

Tr ' T cosh(v) /k

v '
sinh&1(1/,)

NP

k ' cosh 1
NP

cosh&1 1
,

, '
100

100 & PR

2

& 1
1/2

where:

Second, A[] and B[] must be initialized with coefficients corresponding to the
identity system, not all zeros. This is done in lines 180 to 240. During the
first loop, the coefficients for the first stage are combined with the information
initially present in these arrays. If all zeros were initially present, the arrays
would always remain zero. Third, two temporary arrays are used, TA[] and
TB[]. These hold the old values of A[] and B[] during the convolution,
freeing A[] and B[] to hold the new values.

To finish the program, block 13 (lines 540-670) adjusts the filter to have a
unity gain in the passband. This operates as previously described: calculate
the existing gain with Eq. 33-7 or 33-8, and divide all the "a" coefficients to
normalize. The intermediate variables, SA and SB, are the sums of the "a" and
"b" coefficients, respectively.

Calculate Pole Locations in the s-Plane
Regardless of the type of filter being designed, this program begins with a
Butterworth low-pass filter in the s-plane, with a cutoff frequency of .T ' 1
As described in the last chapter, Butterworth filters have poles that are equally
spaced around a circle in the s-plane. Since the filter is low-pass, no zeros are
used. The radius of the circle is one, corresponding to the cutoff frequency of

. Block 3 of the flowchart (lines 1080 & 1090) calculate the location ofT ' 1
each pole-pair in rectangular coordinates. The program variables, RP and IP,
are the real and imaginary parts of the pole location, respectively. These
program variables correspond to F and T, where the pole-pair is located at

. This pole location is calculated from the number of poles in the filterF ± jT
and the stage being worked on, the program variables: NP and P%,
respectively.

Warp from Circle to Ellipse
To implement a Chebyshev filter, this circular pattern of poles must be
transformed into an elliptical pattern. The relative flatness of the ellipse
determines how much ripple will be present in the passband of the filter. If the
pole location on the circle is given by: F and T, the corresponding location on
the ellipse, , is given by:Fr and Tr

Chapter 33- The z-Transform 625

FIGURE 33-7
Chebyshev-Butterworth filter design. This program was previously presented as Table 20-4 and
Table 20-5 in Chapter 20. Figure 33-8 shows the program and flowchart for subroutine 1000,
called from line 340 of this main program.

START

END

print final
coefficients

finish combining
coefficients

more
pole pairs

?

add coefficients
to cascade

enter filter
parameters

initialize
variables

no

yes

normalize
gain

1

2

10

11

12

13

14

tocalculate
coefficients

for this
pole-pair

(see Fig. 33-8)
SUB 1000 3

9

100 'CHEBYSHEV FILTER- COEFFICIENT CALCULATION
110 '
120 'INITIALIZE VARIABLES
130 DIM A[22] 'holds the "a" coefficients
140 DIM B[22] 'holds the "b" coefficients
150 DIM TA[22] 'internal use for combining stages
160 DIM TB[22] 'internal use for combining stages
170 '
180 FOR I% = 0 TO 22
190 A[I%] = 0
200 B[I%] = 0
210 NEXT I%
220 '
230 A[2] = 1
240 B[2] = 1
250 PI = 3.14159265
260 'ENTER THE FILTER PARAMETERS
270 INPUT "Enter cutoff frequency (0 to .5): ", FC
280 INPUT "Enter 0 for LP, 1 for HP filter: ", LH
290 INPUT "Enter percent ripple (0 to 29): ", PR
300 INPUT "Enter number of poles (2,4,...20): ", NP
310 '
320 FOR P% = 1 TO NP/2 'LOOP FOR EACH POLE-ZERO PAIR
330 '
340 GOSUB 1000 'The subroutine in Fig. 33-8
350 '
360 FOR I% = 0 TO 22 'Add coefficients to the cascade
370 TA[I%] = A[I%]
380 TB[I%] = B[I%]
390 NEXT I%
400 '
410 FOR I% = 2 TO 22
420 A[I%] = A0*TA[I%] + A1*TA[I%-1] + A2*TA[I%-2]
430 B[I%] = TB[I%] - B1*TB[I%-1] - B2*TB[I%-2]
440 NEXT I%
450 '
460 NEXT P%
470 '
480 B[2] = 0 'Finish combining coefficients
490 FOR I% = 0 TO 20
500 A[I%] = A[I%+2]
510 B[I%] = -B[I%+2]
520 NEXT I%
530 '
540 SA = 0 'NORMALIZE THE GAIN
550 SB = 0
560 FOR I% = 0 TO 20
570 IF LH = 0 THEN SA = SA + A[I%]
580 IF LH = 0 THEN SB = SB + B[I%]
590 IF LH = 1 THEN SA = SA + A[I%] * (-1)^I%
600 IF LH = 1 THEN SB = SB + B[I%] * (-1)^I%
610 NEXT I%
620 '
630 GAIN = SA / (1 - SB)
640 '
650 FOR I% = 0 TO 20
660 A[I%] = A[I%] / GAIN
670 NEXT I%
680 ' 'The final recursion coefficients are
690 END 'in A[] and B[]

L
oo

p
fo

r
ea

ch
 o

f
th

e
po

le
-p

ai
rs

The Scientist and Engineer's Guide to Digital Signal Processing626

sinh(x) '
e x & e &x

2

cosh&1(x) ' loge [x % (x 2& 1)1/2]

sinh&1(x) ' loge [x % (x 2% 1)1/2]

cosh(x) '
e x % e &x

2

EQUATION 33-10
The Bilinear transform. This substitution
maps every point in the s-plane into a
corresponding piont in the z-plane.

s 6 2 (1 & z &1)

T (1 % z &1)

These equations use hyperbolic sine and cosine functions to define the
ellipse, just as ordinary sine and cosine functions operate on a circle. The
flatness of the ellipse is controlled by the variable: PR , which is
numerically equal to the percentage of ripple in the filter's passband. The
variables: ,, < and k are used to reduce the complexity of the equations, and
are represented in the program by: ES, VX and KX, respectively. In
addition to converting from a circle to an ellipse, these equations correct the
pole locations to keep a unity cutoff frequency. Since many programming
languages do not support hyperbolic functions, the following identities are
used:

These equations produce illegal operations for and . To use thisPR $ 30 PR ' 0
program to calculate Butterworth filters (i.e., zero ripple, PR = 0), the program
lines that implement these equations must be bypassed (line 1120).

Continuous to Discrete Conversion
The most common method of converting a pole-zero pattern from the s-domain
into the z-domain is the bilinear transform. This is a mathematical technique
of conformal mapping, where one complex plane is algebraically distorted or
warped into another complex plane. The bilinear transform changes , intoH (s)

, by the substitution:H (z)

That is, we write an equation for , and then replaced each s with theH (s)
above expression. In most cases, is used. This resultsT ' 2 tan(1/2) ' 1.093
in the s-domain's frequency range of 0 to B radians/second, being mapped
to the z-domain's frequency range of 0 to infinity radians. Without going into
more detail, the bilinear transform has the desired properties to convert

Chapter 33- The z-Transform 627

FIGURE 33-8
Subroutine called from Figure 33-7.

HP or LP
filter?

HPLP

s to z-domain
conversion

warp from circle
to ellipse

Chebyshev
filter?

yes

no

calculate pole
location on circle

LP to LP
transform

LP to HP
transform

3

4

5

6

7

8 9

1000 'THIS SUBROUTINE IS CALLED FROM FIG. 33-7, LINE 340
1010 '
1020 'Variables entering subroutine: PI, FC, LH, PR, HP, P%
1030 'Variables exiting subroutine: A0, A1, A2, B1, B2
1040 'Variables used internally: RP, IP, ES, VX, KX, T, W, M, D, K,
1050 ' X0, X1, X2, Y1, Y2
1060 '
1070 ' 'Calculate pole location on unit circle
1080 RP = -COS(PI/(NP*2) + (P%-1) * PI/NP)
1090 IP = SIN(PI/(NP*2) + (P%-1) * PI/NP)
1100 '
1110 ' 'Warp from a circle to an ellipse
1120 IF PR = 0 THEN GOTO 1210
1130 ES = SQR((100 / (100-PR))^2 -1)
1140 VX = (1/NP) * LOG((1/ES) + SQR((1/ES^2) + 1))
1150 KX = (1/NP) * LOG((1/ES) + SQR((1/ES^2) - 1))
1160 KX = (EXP(KX) + EXP(-KX))/2
1170 RP = RP * ((EXP(VX) - EXP(-VX)) /2) / KX
1180 IP = IP * ((EXP(VX) + EXP(-VX)) /2) / KX
1190 '
1200 ' 's-domain to z-domain conversion
1210 T = 2 * TAN(1/2)
1220 W = 2*PI*FC
1230 M = RP^2 + IP^2
1240 D = 4 - 4*RP*T + M*T^2
1250 X0 = T^2/D
1260 X1 = 2*T^2/D
1270 X2 = T^2/D
1280 Y1 = (8 - 2*M*T^2)/D
1290 Y2 = (-4 - 4*RP*T - M*T^2)/D
1300 '
1310 ' 'LP TO LP, or LP TO HP
1320 IF LH = 1 THEN K = -COS(W/2 + 1/2) / COS(W/2 - 1/2)
1330 IF LH = 0 THEN K = SIN(1/2 - W/2) / SIN(1/2 + W/2)
1340 D = 1 + Y1*K - Y2*K^2
1350 A0 = (X0 - X1*K + X2*K^2)/D
1360 A1 = (-2*X0*K + X1 + X1*K^2 - 2*X2*K)/D
1370 A2 = (X0*K^2 - X1*K + X2)/D
1380 B1 = (2*K + Y1 + Y1*K^2 - 2*Y2*K)/D
1390 B2 = (-K^2 - Y1*K + Y2)/D
1400 IF LH = 1 THEN A1 = -A1
1410 IF LH = 1 THEN B1 = -B1
1420 '
1430 RETURN

H (s) '
1

(s & p1) (s & p2)

from the s-plane to the z-plane, such as vertical lines being mapped into circles.
Here is an example of how it works. For a continuous system with a single
pole-pair located at and , the s-domain transfer functionp1 ' F % jT p2 ' F & jT
is given by:

The bilinear transform converts this into a discrete system by replacing each
s with the expression given in Eq. 33-10. This creates a z-domain transfer

The Scientist and Engineer's Guide to Digital Signal Processing628

H (z) '
1

2(1& z &1)

T (1% z &1)
& (F% jT)

2(1& z &1)

T (1% z &1)
& (F& jT)

a0 ' T 2/D

a1 ' 2T 2/D

a2 ' T 2/D

b2 ' (&4 & 4FT & M T 2) /D

b1 ' (8 & 2MT 2) /D

where:

M ' F2 % T2

T ' 2 tan (1/2)
D ' 4 & 4FT % MT 2

EQUATION 33-11
Bilinear transform for two poles.
The pole-pair is located at F ± T in
the s-plane, and a0, a1, a2, b1, b2 are
the recursion coefficients for the
discrete system.

function also containing two poles. The problem is, the substitution leaves the
transfer function in a very unfriendly form:

Working through the long and tedious algebra, this expression can be
placed in the standard form of Eq. 33-3, and the recursion coefficients
identified as:

The variables M, T, and D have no physical meaning; they are simply used to
make the equations shorter.

Lines 1200-1290 use these equations to convert the location of the s-domain
pole-pair, held in the variables, RP and IP, directly into the recursive
coefficients, held in the variables, X0, X1, X2, Y1, Y2. In other words, we
have calculated an intermediate result: the recursion coefficients for one stage
of a low-pass filter with a cutoff frequency of one.

Low-pass to Low-pass Frequency Change
Changing the frequency of the recursive filter is also accomplished with a
conformal mapping technique. Suppose we know the transfer function of a
recursive low-pass filter with a unity cutoff frequency. The transfer
function of a similar low-pass filter with a new cutoff frequency, W, is
obtained by using a low-pass to low-pass transform. This is also carried

Chapter 33- The z-Transform 629

EQUATION 33-12
Low-pass to low-pass transform. This
is a method of changing the cutoff
frequency of low-pass filters. The
original filter has a cutoff frequency of
unity, while the new filter has a cutoff
frequency of W, in the range of 0 to B.

z &1 6 z &1 & k

1& kz &1

k '
sin(1/2&W /2)
sin(1/2%W /2)

where:

a0 ' (a0 & a1k % a2k
2) /D

a1 ' (&2a0k % a1 % a1k
2 & 2a2k) /D

b1 ' (2k % b1 % b1k
2 & 2b2k) /D

EQUATION 33-13
Low-pass to low-pass conversion. The
recursion coefficients of the filter with
unity cutoff are shown in italics. The
coefficients of the low-pass filter with
a cutoff frequency of W are in roman.

b2 ' (& k 2 & b1k % b2) /D

a2 ' (a0k
2 & a1k % a2) /D

D ' 1 % b1k & b2 k 2

k '
sin (1/2&W/2)
sin (1/2%W/2)

where:

z &1 6 & z &1 & k

1% kz &1

EQUATION 33-14
Low-pass to high-pass transform. This
substitution changes a low-pass filter
into a high-pass filter. The cutoff
frequency of the low-pass filter is one,
while the cutoff frequency of the high-
pass filter is W. k ' &

cos(W/2%1/2)
cos(W/2& 1/2)

where:

out by substituting variables, just as with the bilinear transform. We start
by writing the transfer function of the unity cutoff filter, and then replace
each z-1 with the following:

This provides the transfer function of the filter with the new cutoff frequency.
The following design equations result from applying this substitution to the
biquad, i.e., no more than two poles and two zeros:

Low-pass to High-pass Frequency Change
The above transform can be modified to change the response of the system from
low-pass to high-pass while simultaneously changing the cutoff frequency. This
is accomplished by using a low-pass to high-pass transform, via the
substitution:

As before, this can be reduced to design equations for changing the
coefficients of a biquad stage. As it turns out, the equations are identical

The Scientist and Engineer's Guide to Digital Signal Processing630

to those of Eq. 33-13, with only two minor changes. The value of k is different
(as given in Eq. 33-14), and two coefficients, and , are negated in value.a1 b1
These equations are carried out in lines 1330 to 1410 in the program, providing
the desired cutoff frequency, and the choice of a high-pass or low-pass
response.

The Best and Worst of DSP

This book is based on a simple premise: most DSP techniques can be used
and understood with a minimum of mathematics. The idea is to provide
scientists and engineers tools for solving the DSP problems that arise in their
non-DSP research or design activities.

These last four chapters are the other side of the coin: DSP techniques that can
only be understood through extensive math. For example, consider the
Chebyshev-Butterworth filter just described. This is the best of DSP, a series
of elegant mathematical steps leading to an optimal solution. However, it is
also the worst of DSP, a design method so complicated that most scientists and
engineers will look for another alternative.

Where do you fit into this scheme? This depends on who your are and what
you plan on using DSP for. The material in the last four chapters provides the
theoretical basis for signal processing. If you plan on pursuing a career in
DSP, you need to have a detailed understanding of this mathematics. On the
other hand, specialists in other areas of science and engineering only need to
know how DSP is used, not how it is derived. To this group, the theoretical
material is more of a background, rather than a central topic.

