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31

Re X [ k] '
2
N j

N& 1

n' 0

x[n ] cos(2Bkn /N )

Im X [ k] '
&2

N j
N& 1

n' 0

x [n ] sin(2Bkn /N )

EQUATION 31-1
The real DFT.  This is the forward transform,
calculating the frequency domain from the
time domain. In spite of using the names: real
part and imaginary part, these equations
only involve ordinary numbers.   The
frequency index, k, runs from 0 to N/2. These
are the same equations given in Eq. 8-4,
except that the  2/N term has been included in
the forward transform.

The Complex Fourier Transform

Although complex numbers are fundamentally disconnected from our reality, they can be used to
solve science and engineering problems in two ways.  First, the parameters from a real world
problem can be substituted into a complex form, as presented in the last chapter.  The second
method is much more elegant and powerful, a way of making the complex numbers
mathematically equivalent to the physical problem.  This approach leads to the complex Fourier
transform, a more sophisticated version of the real Fourier transform discussed in Chapter 8.
The complex Fourier transform is important in itself, but also as a stepping stone to more
powerful complex techniques, such as the Laplace and z-transforms. These complex transforms
are the foundation of theoretical DSP.

The Real DFT

All four members of the Fourier transform family (DFT, DTFT, Fourier
Transform & Fourier Series) can be carried out with either real numbers or
complex numbers.  Since DSP is mainly concerned with the DFT, we will use
it as an example.   Before jumping into the complex math, let's review the real
DFT with a special emphasis on things that are awkward with the mathematics.
In Chapter 8 we defined the real version of the Discrete Fourier Transform
according to the equations:

In words, an N sample time domain signal, , is decomposed into a setx [n]
of  cosine waves, and  sine waves, with frequencies given by theN/2%1 N/2%1



The Scientist and Engineer's Guide to Digital Signal Processing568

index, k.  The amplitudes of the cosine waves are contained in , whileReX[k ]
the amplitudes of the sine waves are contained in . These equationsIm X [k]
operate by correlating the respective cosine or sine wave with the time domain
signal.  In spite of using the names: real part and imaginary part, there are no
complex numbers in these equations.  There isn't a j anywhere in sight!  We
have also included the normalization factor,   in these equations.2/N
Remember, this can be placed in front of either the synthesis or analysis
equation, or be handled as a separate step (as described by Eq. 8-3). These
equations should be very familiar from previous chapters.  If they aren't, go
back and brush up on these concepts before continuing.  If you don't understand
the real DFT, you will never be able to understand the complex DFT.

Even though the real DFT uses only real numbers, substitution allows the
frequency domain to be represented using complex numbers.  As suggested by
the names of the arrays,  becomes the real part of the complexReX[k ]
frequency spectrum, and  becomes the imaginary part.  In other words,Im X [k]
we place a j with each value in the imaginary part, and add the result to the
real part.  However, do not make the mistake of thinking that this is the
"complex DFT."  This is nothing more than the real DFT with complex
substitution. 
 
While the real DFT is adequate for many applications in science and
engineering, it is mathematically awkward in three respects.  First, it can only
take advantage of complex numbers through the use of substitution. This
makes mathematicians uncomfortable; they want to say: "this equals that," not
simply: "this represents that."  For instance, imagine we are given the
mathematical statement: A equals B.  We immediately know countless
consequences: , , , etc.  Now suppose we are5A' 5B 1%A ' 1%B A/x ' B/x
given the statement: A represents B.  Without additional information, we know
absolutely nothing!  When things are equal, we have access to four-thousand
years of mathematics.  When things only represent each other, we must start
from scratch with new definitions.  For example, when sinusoids are
represented by complex numbers, we allow addition and subtraction, but
prohibit multiplication and division.  

The second thing handled poorly by the real Fourier transform is the  negative
frequency portion of the spectrum.  As you recall from Chapter 10,  sine and
cosine waves can be described as having a positive frequency or a negative
frequency.  Since the two views are identical, the real Fourier transform
ignores the negative frequencies.  However, there are applications where the
negative frequencies are important.   This occurs when negative frequency
components are forced to move into the positive frequency portion of the
spectrum.  The ghosts take human form, so to speak.  For instance, this is what
happens in aliasing, circular convolution, and amplitude modulation. Since the
real Fourier transform doesn't use negative frequencies, its ability to deal with
these situations is very limited.  

Our third complaint is the special handing of  and , theReX [0] ReX [N/2]
first and last points in the frequency spectrum.  Suppose we start with an N
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EQUATION 31-2
Euler's relation. e jx

' cos(x) % j sin(x)

EQUATION 31-3
Euler's relation for
sine & cosine.

sin(x) '
e jx

& e & jx

2j
cos (x) '

e jx
% e & jx

2

sin(Tt ) '
1

2
je j (&T)t

&
1

2
je jTt

EQUATION 31-4
Sinusoids as complex numbers. Using
complex numbers, cosine and sine waves
can be written as the sum of a positive
and a negative frequency.

cos(Tt ) '
1

2
e j (&T)t

%
1

2
e jTt

point signal, .  Taking the DFT provides the frequency spectrum containedx [n]
in  and , where k runs from 0 to N/2.  However, these are notReX [k] ImX [k]
the amplitudes needed to reconstruct the time domain waveform; samples

 and  must first be divided by two.  (See Eq. 8-3 to refreshReX [0] ReX [N/2]
your memory).  This is easily carried out in computer programs, but
inconvenient to deal with in equations. 

The complex Fourier transform is an elegant solution to these problems.  It is
natural for complex numbers and negative frequencies to go hand-in-hand.
Let's see how it works. 

Mathematical Equivalence

Our first step is to show how sine and cosine waves can be written in an
equation with complex numbers.  The key to this is Euler's relation, presented
in the last chapter:

At first glance, this doesn't appear to be much help; one complex expression is
equal to another complex expression.  Nevertheless, a little algebra can
rearrange the relation into two other forms:

This result is extremely important, we have developed a way of writing
equations between complex numbers and ordinary sinusoids.  Although Eq. 31-
3 is the standard form of the identity, it will be more useful for this discussion
if we change a few terms around:

Each expression is the sum of two exponentials: one containing a positive
frequency (T), and the other containing a negative frequency (-T).   In other
words, when sine and cosine waves are written as complex numbers, the
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EQUATION 31-5
The forward complex DFT.  Both the
time domain, , and the frequencyx [n]
domain, , are arrays of complexX [k]
numbers, with k and n running from 0
to N-1. This equation is in polar form,
the most common for DSP. 

X [k] '
1
N j

N& 1

n' 0

x [n ] e & j 2B kn /N

X [k] '
1
N j

N& 1

n' 0

x[n ] cos (2Bkn /N) & j sin(2Bkn /N)
EQUATION 31-6
The forward complex DFT
(rectangular form).

negative portion of the frequency spectrum is automatically included.  The
positive and negative frequencies are treated with an equal status; it requires
one-half of each to form a complete waveform.

The Complex DFT

The forward complex DFT, written in polar form, is given by:

Alternatively, Euler's relation can be used to rewrite the forward transform in
rectangular form:

To start, compare this equation of the complex Fourier transform with the
equation of the real Fourier transform, Eq. 31-1.  At first glance, they appear
to be identical, with only small amount of algebra being required to turn Eq.
31-6 into Eq. 31-1.  However, this is very misleading; the differences between
these two equations are very subtle and easy to overlook, but tremendously
important.   Let's go through the differences in detail.

First, the real Fourier transform converts a real time domain signal, , intox [n]
two real frequency domain signals,  & .  By using complexReX[k ] ImX[k ]
substitution, the frequency domain can be represented by a single complex
array, .  In the complex Fourier transform, both  &  are arraysX [k] x [n] X [k]
of complex numbers.  A practical note:  Even though the time domain is
complex, there is nothing that requires us to use the imaginary part.  Suppose
we want to process a real signal, such as a series of voltage measurements
taken over time.  This group of data becomes the real part of the time domain
signal, while the imaginary part is composed of zeros.

Second, the real Fourier transform only deals with positive frequencies.
That is, the frequency domain index, k , only runs from 0 to N/2.  In
comparison, the complex Fourier transform includes both positive and
negative frequencies.  This means k runs from 0 to N-1.  The frequencies
between 0 and N/2 are positive, while the frequencies between N/2 and N-1
are negative.  Remember, the frequency spectrum of a discrete signal is
periodic, making the negative frequencies between N/2 and N-1 the same as
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between -N/2 and 0.  The samples at 0 and N/2 straddle the line between
positive and negative.  If you need to refresh your memory on this, look
back at Chapters 10 and 12.  

Third, in the real Fourier transform with substitution, a j was added to the sine
wave terms, allowing the frequency spectrum to be represented by complex
numbers.  To convert back to ordinary sine and cosine waves, we can simply
drop the j.  This is the sloppiness that comes when one thing only represents
another thing.  In comparison, the complex DFT, Eq. 31-5, is a formal
mathematical equation with j being an integral part.  In this view, we cannot
arbitrary add or remove a j any more than we can add or remove any other
variable in the equation.  

Fourth, the real Fourier transform has a scaling factor of two in front, while the
complex Fourier transform does not.  Say we take the real DFT of a cosine
wave with an amplitude of one.  The spectral value corresponding to the cosine
wave is also one.  Now, let's repeat the process using the complex DFT.  In
this case, the cosine wave corresponds to two spectral values, a positive and a
negative frequency.  Both these frequencies have a value of ½.  In other words,
a positive frequency with an amplitude of ½, combines with a negative
frequency with an amplitude of ½, producing a cosine wave with an amplitude
of one.

Fifth, the real Fourier transform requires special handling of two frequency
domain samples:  & , but the complex Fourier transform doesReX [0] ReX [N/2]
not.   Suppose we start with a time domain signal, and take the DFT to find the
frequency domain signal.  To reverse the process, we take the Inverse DFT of
the frequency domain signal, reconstructing the original time domain signal.
However, there is scaling required to make the reconstructed signal be identical
to the original signal.  For the complex Fourier transform, a factor of 1/N must
be introduced somewhere along the way.  This can be tacked-on to the forward
transform, the inverse transform, or kept as a separate step between the two.
For the real Fourier transform, an additional factor of two is required (2/N), as
described above.   However, the real Fourier transform also requires an
additional scaling step:  and  must be divided by twoReX [0] ReX [N/2]
somewhere along the way.  Put in other words, a scaling factor of 1/N is used
with these two samples, while 2/N is used for the remainder of the spectrum.
As previously stated, this awkward step is one of our complaints about the real
Fourier transform.  

Why are the real and complex DFTs different in how these two points are
handled?  To answer this, remember that a cosine (or sine) wave in the time
domain becomes split between a positive and a negative frequency in the
complex DFT's spectrum.   However, there are two exceptions to this, the
spectral values at 0 and N/2.  These correspond to zero frequency (DC) and
the Nyquist frequency (one-half the sampling rate).  Since these points
straddle the positive and negative portions of the spectrum, they do not have
a matching point.  Because they are not combined with another value, they
inherently have only one-half the contribution to the time domain as the
other frequencies.
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x[n ] ' j
N& 1

k' 0

X [k ]e j 2B kn /N
EQUATION 31-7
The inverse complex DFT.  This is
matching equation to the forward
complex DFT in Eq. 31-5.
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FIGURE 31-1
Complex frequency spectrum.  These
curves correspond to an entirely real
time domain signal, because the real
part of the spectrum has an even
symmetry, and the imaginary part has
an odd  symmetry. The two square
markers in the real part correspond to
a cosine wave with an amplitude of
one, and a frequency of 0.23.  The
two round markers in the imaginary
part correspond to a sine wave with an
amplitude of one, and a frequency of
0.23. 
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Figure 31-1 illustrates the complex DFT's frequency spectrum.  This figure
assumes the time domain is entirely real, that is, its imaginary part is zero.
We will discuss the idea of imaginary time domain signals shortly.  There
are two common ways of displaying a complex frequency spectrum.  As
shown here, zero frequency can be placed in the center, with positive
frequencies to the right and negative frequencies to the left.  This is the best
way to think about the complete spectrum, and is the only way that an
aperiodic spectrum can be displayed.  

The problem is that the spectrum of a discrete signal is periodic (such as with
the DFT and the DTFT).  This means that everything between -0.5 and 0.5
repeats itself an infinite number of times to the left and to the right.  In this
case, the spectrum between 0 and 1.0 contains the same information as from -
0.5 to 0.5.  When graphs are made, such as Fig. 31-1, the -0.5 to 0.5
convention is usually used.  However, many equations and programs use the 0
to 1.0 form.  For instance, in Eqs. 31-5 and 31-6 the frequency index, k, runs
from 0 to N-1 (coinciding with 0 to 1.0).  However, we could write it to run
from -N/2 to N/2-1 (coinciding with -0.5 to 0.5), if we desired.

Using the spectrum in Fig. 31-1 as a guide, we can examine how the inverse
complex DFT reconstructs the time domain signal.  The inverse complex DFT,
written in polar form, is given by:
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x[n ] ' j
N& 1

k' 0

ReX [k] cos(2Bkn /N ) % j sin(2Bkn /N)
EQUATION 31-8
The inverse complex DFT.
This is Eq. 31-7 rewritten to
show how each value in the
frequency spectrum affects
the time domain.

& j
N& 1

k' 0

ImX [k] sin(2Bkn /N) & j cos (2Bkn /N)

½ cos(2B0.23n ) % ½ j sin(2B0.23n )

½ cos(2B (&0.23) n ) % ½ j sin(2B (&0.23)n )

½ cos(2B0.23n ) & ½ j sin(2B0.23n )

Using Euler's relation, this can be written in rectangular form as:

The compact form of Eq. 31-7 is how the inverse DFT is usually written,
although the expanded version in Eq. 31-9 can be easier to understand.  In
words, each value in the real part of the frequency domain contributes a real
cosine wave and an imaginary sine wave to the time domain.  Likewise, each
value in the imaginary part of the frequency domain contributes a real sine
wave and an imaginary cosine wave.  The time domain is found by adding all
these real and imaginary sinusoids.  The important concept is that each value
in the frequency domain produces both a real sinusoid and an imaginary
sinusoid in the time domain.

For example, imagine we want to reconstruct a unity amplitude cosine wave at
a frequency of .  This requires a positive frequency and a negative2Bk /N
frequency, both from the real part of the frequency spectrum.  The two square
markers in Fig. 31-1 are an example of this, with the frequency set at:

.  The positive frequency at 0.23 (labeled 1 in Fig. 31-1) contributesk /N ' 0.23
a cosine wave and an imaginary sine wave to the time domain:

Likewise, the negative frequency at -0.23 (labeled 2 in Fig. 31-1) also
contributes a cosine and an imaginary sine wave to the time domain:

The negative sign within the cosine and sine terms can be eliminated by the
relations:  and .  This allows the negativecos(& x) ' cos(x) sin(& x) ' & sin(x)
frequency's contribution to be rewritten: 
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½ cos(2B0.23n ) % ½ j sin(2B0.23n )

cos(2B0.23n )

contribution from positive frequency  !

contribution from negative frequency  !

resultant time domain signal  !

½ cos(2B0.23n ) & ½ j sin(2B0.23n )

& ½ sin(2B0.23n ) & ½ j cos(2B0.23n )contribution from positive frequency  !

& sin(2B0.23n )

contribution from negative frequency  !

resultant time domain signal  !

& ½ sin(2B0.23n ) % ½ j cos(2B0.23n )

Adding the contributions from the positive and the negative frequencies
reconstructs the time domain signal:

In this same way, we can synthesize a sine wave in the time domain.  In this
case, we need a positive and negative frequency from the imaginary part of the
frequency spectrum.  This is shown by the round markers in Fig. 31-1.  From
Eq. 31-8, these spectral values contribute a sine wave and an imaginary cosine
wave to the time domain. The imaginary cosine waves cancel, while the real
sine waves add:

Notice that a negative sine wave is generated, even though the positive
frequency had a value that was positive.  This sign inversion is an inherent part
of the mathematics of the complex DFT.  As you recall, this same sign
inversion is commonly used in the real DFT.  That is, a positive value in the
imaginary part of the frequency spectrum corresponds to a negative sine wave.
Most authors include this sign inversion in the definition of the real Fourier
transform to make it consistent with its complex counterpart.  The point is, this
sign inversion must be used in the complex Fourier transform, but is merely an
option in the real Fourier transform. 

The symmetry of the complex Fourier transform is very important.  As
illustrated in Fig. 31-1, a real time domain signal corresponds to a frequency
spectrum with an even real part, and an odd imaginary part.  In other words,
the negative and positive frequencies have the same sign in the real part (such
as points 1 and 2 in Fig. 31-1), but opposite signs in the imaginary part (points
3 and 4).  

This brings up another topic: the imaginary part of the time domain.  Until now
we have assumed that the time domain is completely real, that is, the imaginary
part is zero.  However, the complex Fourier transform does not require this.
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What is the physical meaning of an imaginary time domain signal?  Usually,
there is none.  This is just something allowed by the complex mathematics,
without a correspondence to the world we live in.  However, there are
applications where it can be used or manipulated for a mathematical
purpose.  

An example of this is presented in Chapter 12. The imaginary part of the time
domain produces a frequency spectrum with an odd real part, and an even
imaginary part.  This is just the opposite of the spectrum produced by the real
part of the time domain (Fig. 31-1). When the time domain contains both a real
part and an imaginary part, the frequency spectrum is the sum of the two
spectra, had they been calculated individually.  Chapter 12 describes how this
can be used to make the FFT algorithm calculate the frequency spectra of two
real signals at once.  One signal is placed in the real part of the time domain,
while the other is place in the imaginary part.  After the FFT calculation, the
spectra of the two signals are separated by an even/odd decomposition.

The Family of Fourier Transforms

Just as the DFT has a real and complex version, so do the other members of the
Fourier transform family.  This produces the zoo of equations shown in Table
31-1.  Rather than studying these equations individually, try to understand them
as a well organized and symmetrical group.  The following comments describe
the organization of the Fourier transform family.  It is  detailed, repetitive, and
boring.  Nevertheless, this is the background needed to understand theoretical
DSP.  Study it well. 

1.  Four Fourier Transforms
A time domain signal can be either continuous or discrete, and it can be either
periodic or aperiodic.  This defines four types of Fourier transforms:  the
Discrete Fourier Transform (discrete, periodic), the  Discrete Time
Fourier Transform (discrete, aperiodic), the Fourier Series (continuous,
periodic), and the Fourier Transform (continuous, aperiodic).  Don't try to
understand the reasoning behind these names, there isn't any.  

If a signal is discrete in one domain, it will be periodic in the other.  Likewise,
if a signal is continuous in one domain, will be aperiodic in the other.
Continuous signals are represented by parenthesis, ( ), while discrete signals
are represented by brackets, [ ].  There is no notation to indicate if a signal is
periodic or aperiodic. 

2.  Real versus Complex
Each of these four transforms has a complex version and a real version.  The
complex versions have a complex time domain signal and a complex frequency
domain signal.  The real versions have a real time domain signal and two real
frequency domain signals.  Both positive and negative frequencies are used in
the complex cases, while only positive frequencies are used for the real
transforms.  The complex transforms are usually written in an exponential
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form; however, Euler's relation can be used to change them into a cosine and
sine form if needed.  

3. Analysis and Synthesis
Each transform has an analysis equation (also called the forward transform)
and a synthesis equation (also called the inverse transform).  The analysis
equations describe how to calculate each value in the frequency domain based
on all of the values in the time domain.  The synthesis equations describe how
to calculate each value in the time domain based on all of the values in the
frequency domain.  

4.  Time Domain Notation
Continuous time domain signals are called , while discrete time domainx ( t )
signals are called .  For the complex transforms, these signals are complex.x[n ]
For the real transforms, these signals are real.  All of the time domain signals
extend from minus infinity to positive infinity.  However, if the time domain is
periodic, we are only concerned with a single cycle, because the rest is
redundant.  The variables, T and N, denote the periods of continuous and
discrete signals in the time domain, respectively.

5.  Frequency Domain Notation
Continuous frequency domain signals are called  if they are complex, and X (T) ReX(T)
&  if they are real.  Discrete frequency domain signals are called ImX(T) X[k]
if they are complex, and  &  if they are real.  The complexReX [k ] ImX [k ]
transforms have negative frequencies that extend from minus infinity to zero,
and positive frequencies that extend from zero to positive infinity. The real
transforms only use positive frequencies.  If the frequency domain is periodic,
we are only concerned with a single cycle, because the rest is redundant.  For
continuous frequency domains, the independent variable, T, makes one complete
period from -B to B.  In the discrete case, we use the period where k runs from
0 to N-1

6.  The Analysis Equations
The analysis equations operate by correlation, i.e., multiplying the time
domain signal by a sinusoid and integrating (continuous time domain) or
summing (discrete time domain) over the appropriate time domain section.
If the time domain signal is aperiodic, the appropriate section is from minus
infinity to positive infinity.  If the time domain signal is periodic, the
appropriate section is over any one complete period.   The equations shown
here are written with the integration (or summation) over the period: 0 to
T (or 0 to N-1).  However, any other complete period would give identical
results, i.e., -T to 0, -T/2 to T/2, etc. 

7.  The Synthesis Equations
The synthesis equations describe how an individual value in the time domain
is calculated from all the points in the frequency domain.  This is done by
multiplying the frequency domain by a sinusoid, and integrating (continuous
frequency domain) or summing (discrete frequency domain) over the
appropriate frequency domain section.  If the frequency domain is complex and
aperiodic, the appropriate section is negative infinity to positive infinity.  If the
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‘ Using f instead of T by the relation: T' 2Bf
‘ Integrating over other periods, such as: -T to 0, -T/2 to T/2, or 0 to T
‘ Moving all or part of the scaling factor to the synthesis equation
‘ Replacing the period with the fundamental frequency, f0 ' 1/T
‘ Using other variable names, for example, T can become S in the DTFT,

and  &  can become ak & bk in the Fourier Series Re X [k ] Im X [k ]

frequency domain is complex and periodic, the appropriate section is over one
complete cycle, i.e., -B to B  (continuous frequency domain), or 0 to N-1
(discrete frequency domain).  If the frequency domain is real and aperiodic, the
appropriate section is  zero to positive infinity, that is, only the positive
frequencies.  Lastly, if the frequency domain is real and periodic, the
appropriate section is over the one-half cycle containing the positive
frequencies, either 0 to B (continuous frequency domain) or 0 to N/2 (discrete
frequency domain). 

8.  Scaling
To make the analysis and synthesis equations undo each other, a scaling factor
must be placed on one or the other equation.  In Table 31-1, we have placed
the scaling factors with the analysis equations.  In the complex case, these
scaling factors are: 1/N, 1/T, or 1/2B.  Since the real transforms do not use
negative frequencies, the scaling factors are twice as large: 2/N, 2/T, or 1/B.
The real transforms also include a negative sign in the calculation of the
imaginary part of the frequency spectrum (an option used to make the real
transforms more consistent with the complex transforms).  Lastly, the synthesis
equations for the real DFT and the real Fourier Series have special scaling
instructions involving  and .Re X (0 ) Re X [N /2]

9.  Variations
These equations may look different in other publications.  Here are a few
variations to watch out for:

Why the Complex Fourier Transform is Used

It is painfully obvious from this chapter that the complex DFT is much more
complicated than the real DFT.  Are the benefits of the complex DFT really
worth the effort to learn the intricate mathematics?  The answer to this
question depends on who you are, and what you plan on using DSP for.  A
basic premise of this book is that most practical DSP techniques can be
understood and used without resorting to complex transforms.   If you are
learning DSP to assist in your non-DSP research or engineering, the
complex DFT is probably overkill. 

Nevertheless, complex mathematics is the primary language of those that
specialize in DSP.  If you do not understand this language, you cannot
communicate with professionals in the field.  This includes the ability to
understand the DSP literature: books, papers, technical articles, etc. Why are
complex techniques so popular with the professional DSP crowd?



The Scientist and Engineer's Guide to Digital Signal Processing578

Discrete Fourier Transform (DFT)

x[n ] ' j
N&1

k' 0
X [k] e j 2Bk n /N x[n ] ' j

N /2

k' 0
ReX [k] cos(2Bkn /N )

X [k] '
1
N j

N&1

n' 0
x[n ] e & j 2Bkn /N

ImX [k] '
&2
N j

N&1

n' 0
x[n ] sin(2Bkn /N )

& ImX [k] sin(2Bkn /N )

ReX [k] '
2
N j

N&1

n' 0
x[n ] cos(2Bkn /N )

complex transform real transform

synthesis

analysis

synthesis

analysis

Time domain:  
x[n] is complex, discrete and periodic
n runs over one period, from 0 to N-1

Frequency domain:
X[k] is complex, discrete and periodic
k runs over one period, from 0 to N-1
k = 0 to N/2 are positive frequencies
k = N/2 to N-1 are negative frequencies

Time domain:  
x[n] is real, discrete and periodic
n runs over one period, from 0 to N-1

Frequency domain:
Re X[k] is real, discrete and periodic
Im X[k] is real, discrete and periodic
k runs over one-half period, from 0 to N/2

Note: Before using the synthesis equation, the values
for Re X[0] and Re X[N/2] must be divided by two. 

Discrete Time Fourier Transform (DTFT)

x[n ] ' m
2B

0

X (T) e jTn dT x[n ] ' m
B

0

ReX (T) cos(Tn)

X (T) '
1

2B j
%4

n '&4
x[n ] e & jTn

ImX (T) '
&1
B j

%4

n'&4
x[n ]sin(Tn)

& ImX (T) sin(Tn)dT

ReX (T) '
1
B j

%4

n'&4
x[n ]cos(Tn)

complex transform real transform

synthesis

analysis

synthesis

analysis

Time domain:  
x[n] is complex, discrete and aperiodic
n runs from negative to positive infinity

Frequency domain:
X(T) is complex, continuous, and periodic
T runs over a single period, from 0 to 2B
T = 0 to B are positive frequencies
T = B to 2B are negative frequencies

Time domain:  
x[n] is real, discrete and aperiodic
n runs from negative to positive infinity

Frequency domain:
Re X(T) is real, continuous and periodic
Im X(T) is real, continuous and periodic
T runs over one-half period, from 0 to B

TABLE 31-1   The Fourier Transforms
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Fourier Series
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X [k] e j 2Bkt /T x(t ) ' j
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& ImX [k] sin(2Bkt /T )

ReX [k] '
2
T m

T

0

x(t ) cos(2Bkt /T )dt

complex transform real transform

synthesis

analysis

synthesis

analysis

Time domain:  
x(t) is complex, continuous and periodic
t runs over one period, from 0 to T

Frequency domain:
X[k] is complex, discrete, and aperiodic
k runs from negative to positive infinity
k > 0 are positive frequencies
k < 0 are negative frequencies

Time domain:  
x(t) is real, continuous, and periodic
t runs over one period, from 0 to T

Frequency domain:
Re X[k] is real, discrete and aperiodic
Im X[k] is real, discrete and aperiodic
k runs from zero to positive infinity

Note: Before using the synthesis equation, the value for
Re X[0] must be divided by two.

ImX [k] '
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T
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x(t ) sin(2Bkt /T )dt

Fourier Transform
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0

ReX (T) cos(Tt)

X (T) '
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2B m
%4

&4

x(t ) e & jTt dt

& ImX (T) sin(Tt)dt

ReX (T) '
1
B m

%4

&4

x(t ) cos(Tt)dt

complex transform real transform

synthesis

analysis

synthesis

analysis

Time domain:  
x(t) is complex, continious and aperiodic
t runs from negative to positive infinity

Frequency domain:
X(T) is complex, continious, and aperiodic
T runs from negative to positive infinity
T > 0 are positive frequencies
T < 0 are negative frequencies

Time domain:  
x(t) is real, continuous, and aperiodic
t runs from negative to positive infinity

Frequency domain:
Re X[T] is real, continuous and aperiodic
Im X[T] is real, continuous and aperiodic
T runs from zero to positive infinity

TABLE 31-1   The Fourier Transforms
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There are several reasons we have already mentioned: compact equations,
symmetry between the analysis and synthesis equations, symmetry between the
time and frequency domains, inclusion of negative frequencies, a stepping stone
to the Laplace and z-transforms, etc. 

There is also a more philosophical reason we have not discussed, something
called truth.  We started this chapter by listing several ways that the real
Fourier transform is awkward.  When the complex Fourier transform was
introduced, the problems vanished. Wonderful, we said, the complex Fourier
transform has solved the difficulties.

While this is true, it does not give the complex Fourier transform its proper
due. Look at this situation this way.  In spite of its abstract nature, the complex
Fourier transform properly describes how physical systems behave.  When we
restrict the mathematics to be real numbers, problems arise.  In other words,
these problems are not solved by the complex Fourier transform, they are
introduced by the real Fourier transform.  In the world of mathematics, the
complex Fourier transform is a greater truth than the real Fourier transform.
This holds great appeal to mathematicians and academicians, a group that
strives to expand human knowledge, rather than simply solving a particular
problem at hand.


