
481

CHAPTER

27
Data Compression

Data transmission and storage cost money.  The more information being dealt with, the more it
costs.  In spite of this, most digital data are not stored in the most compact form.  Rather, they
are stored in whatever way makes them easiest to use, such as: ASCII text from word processors,
binary code that can be executed on a computer, individual samples from a data acquisition
system, etc.  Typically, these easy-to-use encoding methods require data files about twice as large
as actually needed to represent the information.  Data compression is the general term for the
various algorithms and programs developed to address this problem. A compression program is
used to convert data from an easy-to-use format to one optimized for compactness.  Likewise, an
uncompression program returns the information to its original form.  We examine five techniques
for data compression in this chapter.   The first three are simple encoding techniques, called:  run-
length, Huffman, and delta encoding.  The last two are elaborate procedures that have established
themselves as industry standards: LZW and JPEG.

Data Compression Strategies

Table 27-1 shows two different ways that data compression algorithms can be
categorized.  In (a), the methods have been classified as either lossless or
lossy.  A lossless technique means that the restored data file is identical to the
original.  This is absolutely necessary for many types of data, for example:
executable code, word processing files, tabulated numbers, etc.  You cannot
afford to misplace even a single bit of this type of information.  In comparison,
data files that represent images and other acquired signals do not have to be
keep in perfect condition for storage or transmission.  All real world
measurements inherently contain a certain amount of noise.  If the changes
made to these signals resemble a small amount of additional noise, no harm is
done.  Compression techniques that allow this type of degradation are called
lossy.  This distinction is important because lossy techniques are much more
effective at compression than lossless methods.  The higher the compression
ratio, the more noise added to the data. 
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Lossless Lossy outputMethod

a.  Lossless or Lossy

run-length
Huffman

delta
LZW

CS&Q
JPEG

MPEG

fixed fixed
fixed variable

variable
variable

Group size:
input

CS&Q
Huffman

Arithmetic
run-length, LZW

variable
fixed

b.  Fixed or variable group size

TABLE 27-1
Compression classifications.  Data compression methods can be divided in two ways.  In (a), the techniques
are classified as lossless or lossy.  Lossless methods restore the compressed data to exactly the same form as
the original, while lossy methods only generate an approximation.  In (b), the methods are classified according
to a fixed or variable size of group taken from the original file and written to the compressed file.

Images transmitted over the world wide web are an excellent example of why
data compression is important.  Suppose we need to download a digitized color
photograph over a computer's 33.6 kbps modem. If the image is not compressed
(a TIFF file, for example), it will contain about 600 kbytes of data.  If it has
been compressed using a lossless technique (such as used in the GIF format),
it will be about one-half this size, or 300 kbytes.  If lossy compression has
been used (a JPEG file), it will be about 50 kbytes.  The point is, the download
times for these three equivalent files are 142 seconds, 71 seconds, and 12
seconds, respectively.  That's a big difference! JPEG is the best choice for
digitized photographs, while GIF is used with drawn images, such as company
logos that have large areas of a single color.

Our second way of classifying data compression methods is shown in Table 27-
1b.  Most data compression programs operate by taking a group of data from
the original file, compressing it in some way, and then writing the compressed
group to the output file.   For instance, one of the techniques in this table is
CS&Q, short for coarser sampling and/or quantization.  Suppose we are
compressing a digitized waveform, such as an audio signal that has been
digitized to 12 bits.  We might read two adjacent samples  from the original
file (24 bits), discard one of the sample completely, discard the least significant
4 bits from the other sample, and then write the remaining 8 bits to the output
file.  With 24 bits in and 8 bits out, we have implemented a 3:1 compression
ratio using a lossy algorithm.  While this is rather crude in itself, it is very
effective when used with a technique called transform compression.  As we
will discuss later, this is the basis of JPEG.

Table 27-1b shows CS&Q to be a fixed-input fixed-output scheme.  That is,
a fixed number of bits are read from the input file and a smaller fixed
number of bits are written to the output file.   Other compression methods
allow a variable number of bits to be read or written.  As you go through
the description of each of these compression methods, refer back to this
table to understand how it fits into this classification scheme.  Why are
JPEG and MPEG not listed in this table? These are composite algorithms
that combine many of the other techniques.  They are too sophisticated to
be classified into these simple categories.
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original data stream:

run-length encoded:

17  8 54  0 0 0 97  5 16  0 45 23  0  0  0  0  0  3 67  0  0  8

17  8 54  0 3 97  5 16  0  1 45 23  0  5  3 67  0  2  8

FIGURE 27-1
Example of run-length encoding.  Each run of zeros is replaced by two characters in the compressed file:
a zero to indicate that compression is occurring, followed by the number of zeros in the run.

Run-Length Encoding

Data files frequently contain the same character repeated many times in a row.
For example, text files use multiple spaces to separate sentences, indent
paragraphs, format tables & charts, etc.  Digitized signals can also have runs
of the same value, indicating that the signal is not changing.  For instance, an
image of the nighttime sky would contain long runs of the character or
characters representing the black background.  Likewise, digitized music might
have a long run of zeros between songs.  Run-length encoding is a simple
method of compressing these types of files.

Figure 27-1 illustrates run-length encoding for a data sequence having frequent
runs of zeros.  Each time a zero is encountered in the input data, two values are
written to the output file.  The first of these values is a zero, a flag to indicate
that run-length compression is beginning.  The second value is the number of
zeros in the run.  If the average run-length is longer than two, compression will
take place.  On the other hand, many single zeros in the data can make the
encoded file larger than the original.  

Many different run-length schemes have been developed.  For example, the
input data can be treated as individual bytes, or groups of bytes that represent
something more elaborate, such as floating point numbers.   Run-length
encoding can be used on only one of the characters (as with the zero above),
several of the characters, or all of the characters.

A good example of a generalized run-length scheme is PackBits, created for
Macintosh users.  Each byte (eight bits) from the input file is replaced by nine
bits in the compressed file.   The added ninth bit is interpreted as the sign of
the number.  That is, each character read from the input file is between 0 to
255, while each character written to the encoded file is between -255 and 255.
To understand how this is used, consider the input file: , and1,2,3,4,2,2,2,2,4
the compressed file generated by the PackBits algorithm:   The1,2,3,4,2,&3,4.
compression program simply transfers each number from the input file to the
compressed file, with the exception of the run: 2,2,2,2.  This is represented in
the compressed file by the two numbers: 2,-3. The first number ("2") indicates
what character the run consists of.  The second number ("-3") indicates the
number of characters in the run, found by taking the absolute value and adding
one.  For instance, 4,-2 means 4,4,4;  21,-4 means 21,21,21,21,21, etc.
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0 null 32 space 64 @ 96 `
1 start heading 33 ! 65 A 97 a
2 start of text 34 " 66 B 98 b
3 end of text 35 # 67 C 99 c
4 end of xmit 36 $ 68 D 100 d
5 enquiry 37 % 69 E 101 e
6 acknowledge 38 & 70 F 102 f
7 bell, beep 39 ' 71 G 103 g
8 backspace 40 ( 72 H 104 h
9 horz. tab 41 ) 73 I 105 i
10 line feed 42 * 74 J 106 j
11 vert. tab, home 43 + 75 K 107 k
12 form feed, cls 44 , 76 L 108 l
13 carriage return 45 - 77 M 109 m
14 shift out 46 . 78 N 110 n
15 shift in 47 / 79 O 111 o
16 data line esc 48 0 80 P 112 p
17 device control 1 49 1 81 Q 113 q
18 device control 2 50 2 82 R 114 r
19 device control 3 51 3 83 S 115 s
20 device control 4 52 4 84 T 116 t
21 negative ack. 53 5 85 U 117 r
22 synch. idle 54 6 86 V 118 v
23 end xmit block 55 7 87 W 119 w
24 cancel 56 8 88 X 120 x
25 end of medium 57 9 89 Y 121 y
26 substitute 58 : 90 Z 122 z
27 escape 59 ; 91 [ 123 {
28 file separator 60 < 92 \ 124 |
29 group separator 61 = 93 ] 125 }
30 record separator 62 > 94 ^ 126 ~
31 unit separator 63 ? 95 _ 127 del

TABLE 27-2
ASCII codes.  This is a long established
standard for allowing letters and numbers
to be represented in digital form. Each
printable character is assigned a number
between 32 and 127, while the numbers
between 0 and 31 are used for various
control actions.  Even though only 128
codes are defined, ASCII characters are
usually stored as a full byte (8 bits).  The
undefined values (128 to 255) are often
used for Greek letters, math symbols, and
various geometric patterns; however, this is
not standardized.  Many of the control
characters (0 to 31) are based on older
communications networks, and are not
applicable to computer technology.

An inconvenience with PackBits is that the nine bits must be reformatted into
the standard eight bit bytes used in computer storage and transmission.  A
useful modification to this scheme can be made when the input is restricted to
be ASCII text.  As shown in Table 27-2, each ASCII character is usually
stored as a full byte (eight bits), but really only uses seven of the bits to
identify the character.  In other words, the values 127 through 255 are not
defined with any standardized meaning, and do not need to be stored or
transmitted.  This allows the eighth bit to indicate if run-length encoding is in
progress.

Huffman Encoding

This method is named after D.A. Huffman, who developed the procedure in the
1950s.  Figure 27-2 shows a histogram of the byte values from a large ASCII
file.  More than 96% of this file consists of only 31 characters: the lower case
letters, the space, the comma, the period, and the carriage return.  This
observation can be used to make an appropriate compression scheme for this
file.  To start, we will assign each of these 31 common characters a five bit
binary code: 00000 = "a", 00001 = "b", 00010 = "c", etc.  This allows 96% of
the file to be reduced in size by 5/8.  The last of the five bit codes, 11111, will
be a flag indicating that the character being transmitted is not one of the 31
common characters.  The next eight bits in the file indicate what the character
is, according to the standard ASCII assignment.  This results in 4% of the
characters in the input file requiring 5+8=13 bits.  The idea is to assign
frequently used characters fewer bits, and seldom used characters



Chapter 27- Data Compression 485

Byte value
0 50 100 150 200 250

0.00

0.05

0.10

0.15

0.20

lower case
letters

upper case
letters &
numbers

space

CR

FIGURE 27-2
Histogram of text.  This is a histogram of
the ASCII values from a chapter in this
book.  The most common characters are
the lower case letters, the space and the
carriage return. 
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more bits.  In this example, the average number of bits required per original
character  is :  .   In other words, an overall0.96 ×5 % 0.04 ×13 ' 5.32
compression ratio of: 8 bits/5.32 bits, or about .1.5 :1

Huffman encoding takes this idea to the extreme. Characters that occur most
often, such the space and period, may be assigned as few as one or two bits.
Infrequently used characters, such as: !, @, #, $ and %, may require a dozen
or more bits.  In mathematical terms, the optimal situation is reached when the
number of bits used for each character is proportional to the logarithm of the
character's probability of occurrence.

A clever feature of Huffman encoding is how the variable length codes can be
packed together.  Imagine receiving a serial data stream of ones and zeros.  If
each character is represented by eight bits, you can directly separate one
character from the next by breaking off 8 bit chunks.  Now consider a Huffman
encoded data stream, where each character can have a variable number of  bits.
How do you separate one character from the next?  The answer lies in the
proper selection of the Huffman codes that enable the correct separation.  An
example will illustrate how this works. 

Figure 27-3 shows a simplified Huffman encoding scheme.  The characters A
through G occur in the original data stream with the probabilities shown.  Since
the character A is the most common, we will represent it with a single bit, the
code: 1.  The next most common character, B, receives two bits, the code: 01.
This continues to the least frequent character, G, being assigned  six bits,
000011.  As shown in this illustration, the variable length codes are resorted
into eight bit groups, the standard for computer use.

When uncompression occurs, all the eight bit groups are placed end-to-end to
form a long serial string of ones and zeros.  Look closely at the encoding
table of Fig. 27-3, and notice how each code consists of two parts: a number
of zeros before a one, and an optional binary code after the one. This allows
the binary data stream to be separated into codes without the need for
delimiters or other marker between the codes.  The uncompression program
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0010 0001 000011 1 0011 000010 01 00 10 1

C E G A D F B E A

00100001 00001110 01100001 00100 10 1
byte 1 byte 2 byte 3 byte 4

Huffman encoded:

grouped into bytes:

original data stream:

1
01
0010
0011
0001
00 00 10
000011

A
B
C
D
E
F
G

.154

.110

.072

.063

.059

.015

.011

letter probability Huffman code

Example Encoding Table

FIGURE 27-3
Huffman encoding. The encoding table
assigns each of the seven letters used in this
example a variable length binary code, based
on its probability of occurrence.  The original
data stream composed of these 7 characters is
translated by this table into the Huffman
encoded data.  Since each of the Huffman
codes is a different length, the binary data
need to be regrouped into standard 8 bit bytes
for storage and transmission. 

looks at the stream of ones and zeros until a valid code is formed, and then
starting over looking for the next character.  The way that the codes are formed
insures that no ambiguity exists in the separation.  

A more sophisticated version of the Huffman approach is called arithmetic
encoding.  In this scheme, sequences of characters are represented by
individual codes, according to their probability of occurrence.  This has the
advantage of better data compression, say 5-10%.  Run-length encoding
followed by either Huffman or arithmetic encoding is also a common strategy.
As you might expect, these types of algorithms are very complicated, and
usually left to data compression specialists.

To implement Huffman or arithmetic encoding, the compression and un-
compression algorithms must agree on the binary codes used to represent each
character (or groups of characters).  This can be handled in one of two ways.
The simplest is to use a predefined encoding table that is always the same,
regardless of the information being compressed.  More complex schemes use
encoding optimized for the particular data being used.  This requires that the
encoding table be included in the compressed file for use by the uncompression
program.   Both methods are common.

Delta Encoding

In science, engineering, and mathematics, the Greek letter delta ()) is  used to
denote the change in a variable.  The term delta encoding, refers to
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original data stream:

delta encoded:

17 19 24 24 24 21 15 10 89 95 96 96 96 95 94 94 95 93 90 87 86 86

17  2  5  0  0 -3 -6 -5 79  6  1  0  0 -1 -1  0  1 -2 -3 -3 -1  0

de
lt

a

FIGURE 27-4
Example of delta encoding.  The first value in the encoded file is the same as the first value in the original
file.  Thereafter, each sample in the encoded file is the difference between the current and last sample in
the original file. 
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Sample number
0 100 200 300 400 500

-128

-96
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a.  Audio signal

Sample number
0 100 200 300 400 500

-128
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b.  Delta encoded

FIGURE 27-5
Example of delta encoding.  Figure (a) is an audio signal digitized to 8 bits.  Figure (b) shows the delta
encoded version of this signal.  Delta encoding is useful for data compression if the signal being encoded
varies slowly from sample-to-sample.

A
m

pl
itu

de

A
m

pl
itu

de

several techniques that store data as the difference between successive samples
(or characters), rather than directly storing the samples themselves.  Figure 27-
4 shows an example of how this is done.   The first value in the delta encoded
file is the same as the first value in the original data.  All the following values
in the encoded file are equal to the difference (delta) between the corresponding
value in the input file, and the previous value in the input file.

Delta encoding can be used for data compression when the values in the
original data are smooth, that is, there is typically only a small change between
adjacent values.  This is not the case for ASCII text and executable code;
however, it is very common when the file represents a signal.  For instance,
Fig. 27-5a shows a segment of an audio signal, digitized to 8 bits, with each
sample between -127 and 127.  Figure 27-5b shows the delta encoded version
of this signal.  The key feature is that the delta encoded signal has a lower
amplitude than the original signal.  In other words, delta encoding has
increased the probability that each sample's value will be near zero, and
decreased the probability that it will be far from zero.  This uneven probability
is just the thing that Huffman encoding needs to operate.  If the original signal
is not changing, or is changing in a straight line, delta encoding will result in
runs of samples having the same value.
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This is what run-length encoding requires.  Correspondingly, delta encoding
followed by Huffman and/or run-length encoding is a common strategy for
compressing signals.

The idea used in delta encoding can be expanded into a more complicated
technique called Linear Predictive Coding, or LPC.   To understand LPC,
imagine that the first 99 samples from the input signal have been encoded, and
we are about to work on sample number 100.   We then ask ourselves:  based
on the first 99 samples, what is the most likely value for sample 100?  In delta
encoding, the answer is that the most likely value for sample 100 is the same
as the previous value, sample 99.  This expected value is used as a reference
to encode sample 100.  That is, the difference between the sample and the
expectation is placed in the encoded file.   LPC expands on this by making a
better guess at what the most probable value is.  This is done by looking at the
last several samples, rather than just the last sample.  The algorithms used by
LPC are similar to recursive filters, making use of the z-transform and other
intensively mathematical techniques.  

LZW Compression

LZW compression is named after its developers,  A. Lempel and J. Ziv, with
later modifications by Terry A. Welch.   It is the foremost technique for
general purpose data compression due to its simplicity and versatility.
Typically, you can expect LZW to compress text, executable code, and similar
data files to about one-half their original size.  LZW also performs well when
presented with extremely redundant data files, such as tabulated numbers,
computer source code, and acquired signals.  Compression ratios of 5:1 are
common for these cases.  LZW is the basis of several personal computer
utilities that claim to "double the capacity of your hard drive." 

LZW compression is always used in GIF image files, and offered as an option
in TIFF and PostScript.  LZW compression is protected under U.S. patent
number 4,558,302, granted December 10, 1985 to Sperry Corporation (now the
Unisys Corporation).  For information on commercial licensing, contact: Welch
Licensing Department, Law Department, M/SC2SW1, Unisys Corporation, Blue
Bell, Pennsylvania, 19424-0001.   

LZW compression uses a code table, as illustrated in Fig. 27-6.  A common
choice is to provide 4096 entries in the table.  In this case, the LZW
encoded data consists entirely of 12 bit codes, each referring to one of the
entries in the code table.  Uncompression is achieved by taking each code
from the compressed file, and translating it through the code table to find
what character or characters it represents.  Codes 0-255 in the code table
are always assigned to represent single bytes from the input file.  For
example, if only these first 256 codes were used, each byte in the original
file would be converted into 12 bits in the LZW encoded file, resulting in
a 50% larger file size.  During uncompression, each 12 bit code would be
translated via the code table back into the single bytes.  Of course, this
wouldn't be a useful situation.
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FIGURE 27-6
Example of  code table compression.  This is the basis of the
popular LZW compression method.  Encoding occurs by
identifying sequences of bytes in the original file that exist
in the code table. The 12 bit code representing the sequence
is placed in the compressed file instead of the sequence. The
first 256 entries in the table correspond to the single byte
values, 0 to 255, while the remaining entries correspond to
sequences of bytes.  The LZW algorithm is an efficient way
of generating the code table based on the particular data
being compressed.  (The code table in this figure is a
simplified example, not one actually generated by the LZW
algorithm). 
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123 145 201   4 119  89 243 245  59  11 206 145 201   4 243 245original data stream:
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code number

0254
0255
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0
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0256
0257

4095

145 201 4
243 245

xxx xxx xxx

Example Code Table
translation

code table encoded:

The LZW method achieves compression by using codes 256 through 4095
to represent sequences of bytes.  For example, code 523 may represent the
sequence of three bytes: 231 124 234.  Each time the compression algorithm
encounters this sequence in the input file, code 523 is placed in the encoded
file.  During uncompression, code 523 is translated via the code table to
recreate the true 3 byte sequence.  The longer the sequence assigned to a
single code, and the more often the sequence is repeated, the higher the
compression achieved.  

Although this is a simple approach, there are two major obstacles that need to
be overcome:  (1) how to determine what sequences should be in the code
table, and (2) how to provide the uncompression program the same code table
used by the compression program.  The LZW algorithm exquisitely solves both
these problems. 

When the LZW program starts to encode a file, the code table contains only the
first 256 entries, with the remainder of the table being blank.  This means that
the first codes going into the compressed file are simply the single bytes from
the input file being converted to 12 bits.  As the encoding continues, the LZW
algorithm identifies repeated sequences in the data, and adds them to the code
table.  Compression starts the second time a sequence is encountered.  The key
point is that a sequence from the input file is not added to the code table until
it has already been placed in the compressed file as individual characters
(codes 0 to 255).  This is important because it allows the uncompression
program to reconstruct the code table directly from the compressed data,
without having to transmit the code table separately.
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START

END

STRING+CHAR

input first byte, 
store in STRING

input next byte, 
store in CHAR

is
STRING+CHAR

in table?

NO YES

output the code
for STRING

STRING = CHAR

STRING =
STRING + CHAR

more bytes

NO

YES

ouput the code
for STRING

to input?

1

2

3

4

5

6

7

8

9

add entry in table for

FIGURE 27-7
LZW compression flowchart.  The variable, CHAR, is a single byte.  The variable, STRING, is a variable
length sequence of bytes.  Data are read from the input file (box 1 & 2) as single bytes, and written to the
compressed file (box 4) as 12 bit codes.  Table 27-3 shows an example of this algorithm.

Figure 27-7 shows a flowchart for LZW compression.  Table 27-3 provides the
step-by-step details for an example input file consisting of 45 bytes, the ASCII
text string:  the/rain/in/Spain/falls/mainly/on/the/plain.  When we say that the
LZW algorithm reads the character "a" from the input file, we mean it reads the
value: 01100001 (97 expressed in 8 bits), where 97 is "a" in ASCII.  When we
say it writes the character "a" to the encoded  file, we mean it writes:
000001100001 (97 expressed in 12 bits).
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TABLE 27-3
LZW example. This shows the compression of the phrase:  the/rain/in/Spain/falls/mainly/on/the/plain/.

CHAR  STRING
+ CHAR In Table? Output Add to

Table
New

STRING Comments

1 t t t first character- no action
2 h th no t 256 = th h
3 e he no h 257 = he e
4 / e/ no e 258 = e/ /
5 r /r no / 259 = /r r
6 a ra no r 260 = ra a
7 i ai no a 261 = ai i
8 n in no i 262 = in n
9 / n/ no n 263 = n/ /

10 i /i no / 264 = /i i
11 n in yes  (262) in first match found
12 / in/ no 262 265 = in/ /
13 S /S no / 266 = /S S
14 p Sp no S 267 = Sp p
15 a pa no p 268 = pa a
16 i ai yes  (261) ai matches ai, ain not in table yet
17 n ain no 261 269 = ain n ain added to table 
18 / n/ yes  (263) n/
19 f n/f no 263 270 = n/f f
20 a fa no f 271 = fa a
21 l al no a 272 = al l
22 l ll no l 273 = ll l
23 s ls no l 274 = ls s
24 / s/ no s 275 = s/ /
25 m /m no / 276 = /m m
26 a ma no m 277 = ma a
27 i ai yes  (261) ai matches ai
28 n ain yes  (269) ain matches longer string, ain
29 l ainl no 269 278 = ainl l
30 y ly no l 279 = ly y
31 / y/ no y 280 = y/ /
32 o /o no / 281 = /o o
33 n on no o 282 = on n
34 / n/ yes  (263) n/
35 t n/t no 263 283 = n/t t
36 h th yes  (256) th matches th, the not in table yet
37 e the no 256 284 = the e the added to table
38 / e/ yes e/
39 p e/p no 258 285 = e/p p
40 l pl no p 286 = pl l
41 a la no l 287 = la a
42 i ai yes  (261) ai matches ai
43 n ain yes  (269) ain matches longer string ain
44 / ain/ no 269 288 = ain/ /
45 EOF / / end of file, output STRING
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The compression algorithm uses two variables: CHAR and STRING.  The
variable, CHAR, holds a single character, i.e., a single byte value between 0
and 255.  The variable, STRING, is a variable length string, i.e., a group of one
or more characters, with each character being a single byte.   In box 1 of Fig.
27-7, the program starts by taking the first byte from the input file, and placing
it in the variable, STRING.   Table 27-3 shows this action in line 1.  This is
followed by the algorithm looping for each additional byte in the input file,
controlled in the flow diagram by box 8.  Each time a byte is read from the
input file (box  2), it is stored in the variable, CHAR.  The data table is then
searched to determine if  the concatenation of the two variables,
STRING+CHAR, has already been assigned a code (box 3).   

If a match in the code table is not found, three actions are taken, as shown in
boxes 4, 5 & 6.  In box 4, the 12 bit code corresponding to the contents of the
variable, STRING, is written to the compressed file.  In box 5, a new code is
created in the table for the concatenation of STRING+CHAR.  In box 6,  the
variable, STRING, takes the value of the variable, CHAR.  An example of these
actions is shown in lines 2 through 10 in Table 27-3, for the first 10 bytes of
the example file.

When a match in the code table is found (box 3), the concatenation of
STRING+CHAR is stored in the variable, STRING, without any other action
taking place (box 7).  That is,  if a matching sequence is found in the table,
no action should be taken before determining if there is a longer matching
sequence also in the table.  An example of this is shown in line 11, where
the sequence: STRING+CHAR = in, is identified as already having a code
in the table.  In line 12, the next character from the input file, /,  is added
to the sequence, and the code table is searched for: in/.  Since this longer
sequence is not in the table, the program adds it to the table, outputs the
code for the shorter sequence that is in the table (code 262), and starts over
searching for sequences beginning with the character, /.   This flow of
events is continued until there are no more characters in the input file.  The
program is wrapped up with the code corresponding to the current value of
STRING being written to the compressed file (as illustrated in box 9 of Fig.
27-7 and line 45 of Table 27-3).

A flowchart of the LZW uncompression algorithm is shown in Fig. 27-8.  Each
code is read from the compressed file and compared to the code table to provide
the translation.  As each code is processed in this manner, the code table is
updated so that it continually matches the one used during the compression.
However, there is a small complication in the uncompression routine.  There
are certain combinations of data that result in the uncompression algorithm
receiving a code that does not yet exist in its code table.  This contingency is
handled in boxes 4,5 & 6.

Only a few dozen lines of code are required for the most elementary LZW
programs.   The real difficulty lies in the efficient management of the code
table.  The brute force approach results in large memory requirements and a
slow program execution.  Several tricks are used in commercial LZW
programs to improve their performance.  For instance, the memory problem
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FIGURE 27-8
LZW uncompression flowchart.  The variables, OCODE and NCODE (oldcode and newcode), hold the
12 bit codes from the compressed file, CHAR holds a single byte, STRING holds a string of bytes.
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arises because it is not know beforehand how long each of the character strings
for each code will be.  Most LZW programs handle this by taking
advantage of the redundant nature of the code table.  For example, look at line
29 in Table 27-3, where code 278 is defined to be ainl.   Rather than storing
these four bytes, code 278 could be stored as:  code 269 + l, where code 269
was previously defined as ain in line 17.  Likewise, code 269 would be stored
as: code 261 + n, where code 261 was previously defined as ai in line 7.  This
pattern always holds: every code can be expressed as a previous code plus one
new character.

The execution time of the compression algorithm is limited by searching the
code table to determine if a match is present.  As an analogy, imagine you want
to find if a friend's name is listed in the telephone directory.  The catch is, the
only directory you have is arranged by telephone number, not alphabetical
order.  This requires you to search page after page trying to find the name you
want.  This inefficient situation is exactly the same as searching all 4096 codes
for a match to a specific character string.  The answer: organize the code table
so that what you are looking for tells you where to look (like a partially
alphabetized telephone directory). In other words, don't assign the 4096 codes
to sequential locations in memory.  Rather, divide the memory into sections
based on what sequences will be stored there.  For example, suppose we want
to find if the sequence:  code 329 + x, is in the code table.  The code table
should be organized so that the "x" indicates where to starting looking.  There
are many schemes for this type of code table management, and they can become
quite complicated. 

This brings up the last comment on LZW and similar compression schemes: it
is a very competitive field.  While the basics of data compression are relatively
simple, the kinds of programs sold as commercial products are extremely
sophisticated. Companies make money by selling you programs that perform
compression, and jealously protect their trade-secrets through patents and the
like. Don't expect to achieve the same level of performance as these programs
in a few hours work.

JPEG (Transform Compression)

Many methods of lossy compression have been developed; however, a family
of techniques called transform compression has proven the most valuable.  The
best example of transform compression is embodied in the popular JPEG
standard of image encoding.  JPEG is named after its origin, the  Joint
Photographers Experts Group.  We will describe the operation of JPEG to
illustrate how lossy compression works.

We have already discussed a simple method of lossy data compression, coarser
sampling and/or quantization (CS&Q in Table 27-1).  This involves reducing
the number of bits per sample or entirely discard some of the samples. Both
these procedures have the desired effect: the data file becomes smaller at the
expense of signal quality.  As you might expect, these simple methods do not
work very well.
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FIGURE 27-9
JPEG image division. JPEG transform compression starts by breaking the image into 8×8 groups,
each containing 64 pixels.   Three of these 8×8 groups are enlarged in this figure, showing the values
of the individual pixels, a single byte value between 0 and 255. 
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Transform compression is based on a simple premise: when the signal is passed
through the Fourier (or other) transform, the resulting data values will no
longer be equal in their information carrying roles.  In particular, the low
frequency components of a signal are more important than the high frequency
components.  Removing 50% of the bits from the high frequency components
might remove, say, only 5% of the encoded information. 

As shown in Fig. 27-9, JPEG compression starts by breaking the image into
8×8 pixel groups.  The full JPEG algorithm can accept a wide range of bits per
pixel, including the use of color information.  In this example, each pixel is a
single byte, a grayscale value between 0 and 255.  These 8×8 pixel groups are
treated independently during compression.  That is, each group is initially
represented by 64 bytes.  After transforming and removing data, each group is
represented by, say, 2 to 20 bytes.  During uncompression, the inverse
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b [x,y] ' cos
(2x % 1) uB

16
cos

(2y % 1)vB
16

EQUATION 27-1
DCT basis functions. The variables
x & y are the indexes in the spatial
domain, and u & v are the indexes in
the frequency spectrum. This is for
an 8×8 DCT, making all the indexes
run from 0 to 7.

transform is taken of the 2 to 20 bytes to create an approximation of the
original 8×8 group.  These approximated groups are then fitted together to
form the uncompressed image.  Why use 8×8 pixel groups instead of, for
instance, 16×16?  The 8×8 grouping was based on the maximum size that
integrated circuit technology could handle at the time the standard was
developed.  In any event, the 8×8 size works well, and it may or may not be
changed in the future. 

Many different transforms have been investigated for data compression, some
of them invented specifically for this purpose.  For instance, the Karhunen-
Loeve transform provides the best possible compression ratio, but is difficult
to implement.  The Fourier transform is easy to use, but does not provide
adequate compression.  After much competition, the winner is a relative of the
Fourier transform, the Discrete Cosine Transform (DCT). 

Just as the Fourier transform uses sine and cosine waves to represent a signal,
the DCT only uses cosine waves.   There are several versions of the DCT, with
slight differences in their mathematics.  As an example of one version, imagine
a 129 point signal, running from sample 0 to sample 128.  Now, make this a
256 point signal by duplicating samples 1 through 127 and adding them as
samples 255 to 130.  That is:   Taking the0, 1, 2, þ , 127, 128, 127, þ , 2, 1.
Fourier transform of this 256 point signal results in a frequency spectrum of
129 points, spread between 0 and 128.  Since the time domain signal was
forced to be symmetrical, the spectrum's imaginary part will be composed of
all zeros.  In other words, we started with a 129 point time domain signal, and
ended with a frequency spectrum of 129 points, each the amplitude of a cosine
wave.  Voila, the DCT!

When the DCT is taken of an 8×8 group, it results in an 8×8 spectrum.  In
other words, 64 numbers are changed into 64 other numbers.  All these values
are real; there is no complex mathematics here.  Just as in Fourier analysis,
each value in the spectrum is the amplitude of a basis function.  Figure 27-10
shows 6 of the 64 basis functions used in an 8×8 DCT, according to where the
amplitude sits in the spectrum. The 8×8 DCT basis functions are given by:

The low frequencies reside in the upper-left corner of the spectrum, while the
high frequencies are in the lower-right.  The DC component is at [0,0], the
upper-left most value.  The basis function for [0,1] is one-half cycle of a cosine
wave in one direction, and a constant value in the other.  The basis function for
[1,0] is similar, just rotated by 90E.
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FIGURE 27-10
The DCT basis functions.  The DCT spectrum consists of an 8×8 array, with each element in the
array being an amplitude of one of the 64 basis functions.  Six of these basis functions are shown
here, referenced to where the corresponding amplitude resides.

The DCT calculates the spectrum by correlating the 8×8 pixel group with each
of the basis functions.  That is, each spectral value is found by multiplying the
appropriate basis function by the 8×8 pixel group, and then summing the
products.  Two adjustments are then needed to finish the DCT calculation (just
as with the Fourier transform).  First, divide the 15 spectral values in row 0
and column 0 by two.  Second, divide all 64 values in the spectrum by 16. 
The inverse DCT is calculated by assigning each of the amplitudes in the
spectrum to the proper basis function, and summing to recreate the spatial
domain.  No extra steps are required.  These are exactly the same concepts as
in Fourier analysis, just with different basis functions. 

Figure 27-11 illustrates JPEG encoding for the three 8×8 groups identified
in Fig. 27-9.  The left column, Figs. a, b & c, show the original pixel values.
The center column, Figs. d, e & f, show the DCT spectra of these groups.
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FIGURE 27-11
Example of JPEG encoding.   The left column shows three 8×8 pixel groups, the same ones shown in Fig. 27-9.
The center column shows the DCT spectra of these three groups.  The third column shows the error in the
uncompressed pixel values resulting from using a finite number of bits to represent the spectrum.

The right column, Figs. g, h & i, shows the effect of reducing the number of
bits used to represent each component in the frequency spectrum.  For instance,
(g) is formed by truncating each of the samples in (d) to ten bits, taking the
inverse DCT, and then subtracting the reconstructed image from the original.
Likewise, (h) and (i) are formed by truncating each sample in the spectrum to
eight and five bits, respectively.  As expected, the error in the reconstruction
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FIGURE 27-12
Example of JPEG reconstruction.  The 8×8 pixel
group used in this example is the eye in Fig. 27-9.  As
shown, less than 1/4 of the 64 values are needed to
achieve a good approximation to the correct image. 

a.  3 coefficients b.  6 coefficients c.  15 coefficients

d.  64 coefficients
(correct image)

increases as fewer bits are used to represent the data.  As an example of this
bit truncation, the spectra shown in the center column are represented with 8
bits per spectral value, arranged as 0 to 255 for the DC component, and -127
to 127 for the other values.  

The second method of compressing the frequency domain is to discard some
of the 64 spectral values.   As shown by the spectra in Fig. 27-11, nearly
all of the signal is contained in the low frequency components.  This means
the highest frequency components can be eliminated, while only degrading
the signal a small amount.  Figure 27-12 shows an example of the image
distortion that occurs when various numbers of the high frequency
components are deleted.  The 8×8 group used in this example is the eye
image of Fig. 27-10.  Figure (d) shows the correct reconstruction using all
64 spectral values.  The remaining figures show the reconstruction using the
indicated number of lowest frequency coefficients.  As illustrated in (c),
even removing three-fourths of the highest frequency components produces
little error in the reconstruction.  Even better, the error that does occur
looks very much like random noise.

JPEG is good example of how several data compression schemes can be
combined for greater effectiveness.  The entire JPEG procedure is outlined
in the following steps.  First, the image is broken into the 8×8 groups.
Second, the DCT is taken of each group.  Third, each 8×8 spectrum is
compressed by the above methods: reducing the number of bits and
eliminating some of the components.  This takes place in a single step,
controlled by a quantization table.  Two examples of quantization tables are
shown in Fig. 27-13.  Each value in the spectrum is divided by the matching
value in the quantization table, and the result rounded to the nearest
integer.  For instance, the upper-left value of the quantization table is one,
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FIGURE 27-13
JPEG quantization tables.  These are two example quantization tables that might be used during
compression.  Each value in the DCT spectrum is divided by the corresponding value in the
quantization table, and the result rounded to the nearest integer.

a.  Low compression b.  High compression

FIGURE 27-14
JPEG serial conversion. A serpentine pattern
used to convert the 8×8 DCT spectrum into a
linear sequence of 64 values.  This places all of
the high frequency components together, where
the large number of zeros can be efficiently
compressed with run-length encoding. 

resulting in the DC value being left unchanged.  In comparison, the lower-right
entry in (a) is 16, meaning that the original range of -127 to 127 is reduced to
only -7 to 7.  In other words, the value has been reduced in precision from
eight bits to four bits.  In a more extreme case, the lower-right entry in (b) is
256, completely eliminating the spectral value.

In the fourth step of JPEG encoding, the modified spectrum is converted
from an 8×8 array into a linear sequence.  The serpentine pattern shown in
Figure 27-14 is used for this step, placing all of the high frequency
components together at the end of the linear sequence.  This groups the
zeros from the eliminated components into long runs.  The fifth step
compresses these runs of zeros by run-length encoding.  In the sixth step,
the sequence is encoded by either Huffman or arithmetic encoding to form
the final compressed file.  

The amount of compression, and the resulting loss of image quality, can be
selected when the JPEG compression program is run.  Figure 27-15 shows the
type of image distortion resulting from high compression ratios.  With the 45:1
compression ratio shown, each of the 8×8 groups is represented by only about
12 bits.  Close inspection of this image shows that six of the lowest frequency
basis functions are represented to some degree.
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a.  Original image b. With 10:1 compression

c. With 45:1 compression

FIGURE 27-15
Example of JPEG distortion.  Figure (a)
shows the original image, while (b) and (c)
shows restored images using compression
ratios of 10:1 and 45:1, respectively.  The
high compression ratio used in (c) results in
each 8×8 pixel group being represented by
less than 12 bits.

Why is the DCT better than the Fourier transform for image compression?  The
main reason is that the DCT has one-half cycle basis functions, i.e.,  S[0,1] and
S[1,0].  As shown in Fig. 27-10, these gently slope from one side of the array
to the other.  In comparison, the lowest frequencies in the Fourier transform
form one complete cycle.  Images nearly always contain regions where the
brightness is gradually changing over a region.  Using a basis function that
matches this basic pattern allows for better compression.

MPEG

MPEG  is a compression standard for digital video sequences, such as used in
computer video and digital television networks.  In addition, MPEG also
provides for the compression of the sound track associated with the video.  The
name comes from its originating organization, the Moving Pictures Experts
Group.  If you think JPEG is complicated, MPEG is a nightmare!  MPEG is
something you buy, not try to write yourself.  The future of this technology is
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to encode the compression and uncompression algorithms directly into
integrated circuits.  The potential of MPEG is vast.  Think of thousands of
video channels being carried on a single optical fiber running into your home.
This is a key technology of the 21st century.

In addition to reducing the data rate, MPEG has several important features.
The movie can be played forward or in reverse, and at either normal or fast
speed.  The encoded information is random access, that is, any individual
frame in the sequence can be easily displayed as a still picture.  This goes
along with making the movie editable, meaning that short segments from the
movie can be encoded only with reference to themselves, not the entire
sequence.  MPEG is designed to be robust to errors.  The last thing you want
is for a single bit error to cause a disruption of the movie. 

The approach used by MPEG can be divided into two types of compression:
within-the-frame and between-frame.  Within-the-frame compression means
that individual frames making up the video sequence are encoded as if they
were ordinary still images.  This compression is preformed using the JPEG
standard, with just a few variations.  In MPEG terminology, a frame that has
been encoded in this way is called an intra-coded or I-picture. 

Most of the pixels in a video sequence change very little from one frame to the
next.  Unless the camera is moving, most of the image is composed of a
background that remains constant over dozens of frames.  MPEG takes
advantage of this with a sophisticated form of delta encoding to compress the
redundant information between frames.  After compressing one of the frames
as an I-picture, MPEG encodes successive frames as predictive-coded or P-
pictures.  That is, only the pixels that have changed since the I-picture are
included in the P-picture.  
 
While these two compression schemes form the backbone of MPEG, the actual
implementation is immensely more sophisticated than described here.  For
example, a P-picture can be referenced to an I-picture that has been shifted,
accounting for motion of objects in the image sequence.  There are also
bidirectional predictive-coded or B-pictures. These are referenced to both a
previous and a future I-picture.  This handles regions in the image that
gradually change over many of frames.  The individual frames can also be
stored out-of-order in the compressed data to facilitate the proper sequencing
of the I, P, and B-pictures.  The addition of color and sound makes this all the
more complicated.

The main distortion associated with MPEG occurs when large sections of the
image change quickly.  In effect, a burst of information is needed to keep up
with the rapidly changing scenes.  If the data rate is fixed, the viewer notices
"blocky" patterns when changing from one scene to the next.  This can be
minimized in networks that transmit multiple video channels simultaneously,
such as cable television.  The sudden burst of information needed to support a
rapidly changing scene in one video channel, is averaged with the modest
requirements of the relatively static scenes in the other channels.


